660 research outputs found

    Some Applications of Gas Chromatography to Forensic Chemistry

    Full text link

    Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis

    Get PDF
    The process of apoptosis in immune cells like mast cells is essential to regain homeostasis after an inflammatory response. The intrinsic pathway of apoptosis is ultimately controlled by the pro-apoptotic Bcl-2 family members Bax and Bak, which upon activation oligomerize to cause increased permeabilization of the mitochondria outer membrane leading to cell death. We examined the role of Bax and Bak in cytokine deprivation-induced apoptosis in mast cells using connective tissue-like mast cells and mucosal-like mast cells derived from bax−/−, bak−/− and bax−/−bak−/− mice. Although both Bax and Bak were expressed at readily detectable protein levels, we found a major role for Bax in mediating mast cell apoptosis induced by cytokine deprivation. We analyzed cell viability by propidium iodide exclusion and flow cytometry after deprivation of vital cytokines for each mast cell population. Upon cytokine withdrawal, bak−/− mast cells died at a similar rate as wild type, whereas bax−/− and bax−/−bak−/− mast cells were partially or completely resistant to apoptosis, respectively. The total resistance seen in bax−/−bak−/− mast cells is comparable with mast cells deficient of both pro-apoptotic Bim and Puma or mast cells overexpressing anti-apoptotic Bcl-2. These results show that Bax has a predominant and Bak a minor role in cytokine deprivation-induced apoptosis in both connective tissue-like and mucosal-like mast cells

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Telomerase activity, apoptosis and cell cycle progression in ataxia telangiectasia lymphocytes expressing TCL1

    Get PDF
    Individuals affected by ataxia telangiectasia (AT) have a marked susceptibility to cancer. Ataxia telangiectasia cells, in addition to defects in cell cycle checkpoints, show dysfunction of apoptosis and of telomeres, which are both thought to have a role in the progression of malignancy. In 1-5% of patients with AT, clonal expansion of T lymphocytes carrying t(14;14) chromosomal translocation, deregulating TCL1 gene(s), has been described. While it is known that these cells can progress with time to a frank leukaemia, the molecular pathway leading to tumorigenesis has not yet been fully investigated. In this study, we compared AT clonal cells, representing 88% of the entire T lymphocytes (AT94-1) and expressing TCL1 oncogene (ATM- TCL1 +), cell cycle progression to T lymphocytes of AT patients without TCL1 expression (ATM- TCL1-) by analysing their spontaneous apoptosis rate, spontaneous telomerase activity and telomere instability. We show that in ATM- TCL1+ lymphocytes, apoptosis rate and cell cycle progression are restored back to a rate comparable with that observed in normal lymphocytes while telomere dysfunction is maintained. © 2003 Cancer Research UK

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Insulin Concentration Modulates Hepatic Lipid Accumulation in Mice in Part via Transcriptional Regulation of Fatty Acid Transport Proteins

    Get PDF
    Fatty liver disease (FLD) is commonly associated with insulin resistance and obesity, but interestingly it is also observed at low insulin states, such as prolonged fasting. Thus, we asked whether insulin is an independent modulator of hepatic lipid accumulation.In mice we induced, hypo- and hyperinsulinemia associated FLD by diet induced obesity and streptozotocin treatment, respectively. The mechanism of free fatty acid induced steatosis was studied in cell culture with mouse liver cells under different insulin concentrations, pharmacological phosphoinositol-3-kinase (PI3K) inhibition and siRNA targeted gene knock-down. We found with in vivo and in vitro models that lipid storage is increased, as expected, in both hypo- and hyperinsulinemic states, and that it is mediated by signaling through either insulin receptor substrate (IRS) 1 or 2. As previously reported, IRS-1 was up-regulated at high insulin concentrations, while IRS-2 was increased at low levels of insulin concentration. Relative increase in either of these insulin substrates, was associated with an increase in liver-specific fatty acid transport proteins (FATP) 2&5, and increased lipid storage. Furthermore, utilizing pharmacological PI3K inhibition we found that the IRS-PI3K pathway was necessary for lipogenesis, while FATP responses were mediated via IRS signaling. Data from additional siRNA experiments showed that knock-down of IRSs impacted FATP levels.States of perturbed insulin signaling (low-insulin or high-insulin) both lead to increased hepatic lipid storage via FATP and IRS signaling. These novel findings offer a common mechanism of FLD pathogenesis in states of both inadequate (prolonged fasting) and ineffective (obesity) insulin signaling

    Developmental Exposure to a Toxic Spill Compromises Long-Term Reproductive Performance in a Wild, Long-Lived Bird: The White Stork (Ciconia ciconia)

    Get PDF
    Background/Objective: Exposure to environmental contaminants may result in reduced reproductive success and long- lasting population declines in vertebrates. Emerging data from laboratory studies on model species suggest that certain life- stages, such as development, should be of special concern. However, detailed investigations of long-term consequences of developmental exposure to environmental chemicals on breeding performance are currently lacking in wild populations of long-lived vertebrates. Here, we studied how the developmental exposure to a mine spill (Aznalco´ llar, SW Spain, April 1998) may affect fitness under natural conditions in a long-lived bird, the White Stork (Ciconia ciconia). Methodology: The reproductive performance of individually-banded storks that were or not developmentally exposed to the spill (i.e. hatched before or after the spill) was compared when these individuals were simultaneously breeding during the seven years after the spill occurred (1999–2005). Principal Findings: Female storks developmentally exposed to the spill experienced a premature breeding senescence compared with their non-developmentally exposed counterparts, doing so after departing from an unusually higher productivity in their early reproductive life (non-developmentally exposed females: 0.560.33SE fledglings/year at 3-yr old vs. 1.3860.31SE at 6–7 yr old; developmentally exposed females: 1.560.30SE fledglings/year at 3-yr old vs. 0.8660.25SE at 6– 7 yr old). Conclusions/Significance: Following life-history theory, we propose that costly sub-lethal effects reported in stork nestlings after low-level exposure to the spill-derived contaminants might play an important role in shaping this pattern of reproduction, with a clear potential impact on population dynamics. Overall, our study provides evidence that environmental disasters can have long-term, multigenerational consequences on wildlife, particularly when affecting developing individuals, and warns about the risk of widespread low-level contamination in realistic scenarios.Peer reviewe

    Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates

    Get PDF
    While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair
    corecore