554 research outputs found

    A Model to Estimate Sediment Yield from Field-Sized Areas: Development of Model

    Get PDF
    A tool for evaluating sediment yield from field-sized areas is needed for planning management practices to control sediment yield. We developed a reasonably simple simulation model which incorporates fundamental principles of erosion, deposition, and sediment transport mechanics. The model summarizes the state-of-the-art in erosion and sediment yield modeling with appropriate simplifications required to couple the governing equations. Limited testing showed that the procedures developed here give improved estimates over the Universal Soil Loss Equation. Specific components of the model were tested using experimental data from overland flow, erodible channel, and impoundment studies. These results suggest that the model produces reasonable estimates of erosion, sediment transport, and deposition under a variety of circumstances common to field-scale areas. Alternative management practices such as conservation tillage, terracing, and contouring can be evaluated separately or in combination to determine their influence on sediment yield. Given a particular location with specified characteristics for climate, soils, topography, and crops, the model provides a means of evaluating alternative management practices to suit a particular farming operation

    An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase

    Get PDF
    Nitric oxide synthases (NOSs) are classified functionally, based on whether calmodulin binding is Ca2+-dependent (cNOS) or Ca2+-independent (iNOS). This key dichotomy has not been defined at the molecular level. Here we show that cNOS isoforms contain a unique polypeptide insert in their FMN binding domains which is not shared with iNOS or other related flavoproteins. Previously identified autoinhibitory domains in calmodulin-regulated enzymes raise the possibility that the polypeptide insert is the autoinhibitory domain of cNOSs. Consistent with this possibility, three-dimensional molecular modeling suggested that the insert originates from a site immediately adjacent to the calmodulin binding sequence. Synthetic peptides derived from the 45-amino acid insert of endothelial NOS were found to potently inhibit binding of calmodulin and activation of cNOS isoforms. This inhibition was associated with peptide binding to NOS, rather than free calmodulin, and inhibition could be reversed by increasing calmodulin concentration. In contrast, insert-derived peptides did not interfere with the arginine site of cNOS, as assessed from [3H]NG-nitro-L-arginine binding, nor did they potently effect iNOS activity. Limited proteolysis studies showed that calmodulin's ability to gate electron flow through cNOSs is associated with displacement of the insert polypeptide; this is the first specific calmodulin-induced change in NOS conformation to be identified. Together, our findings strongly suggest that the insert is an autoinhibitory control element, docking with a site on cNOSs which impedes calmodulin binding and enzymatic activation. The autoinhibitory control element molecularly defines cNOSs and offers a unique target for developing novel NOS activators and inhibitors

    A topos for algebraic quantum theory

    Get PDF
    The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical Physic

    Big Corrections from a Little Higgs

    Get PDF
    We calculate the tree-level expressions for the electroweak precision observables in the SU(5)/SO(5) littlest Higgs model. The source for these corrections are the exchange of heavy gauge bosons, explicit corrections due to non-linear sigma-model dynamics and a triplet Higgs VEV. Weak isospin violating contributions are present because there is no custodial SU(2) global symmetry. The bulk of these weak isospin violating corrections arise from heavy gauge boson exchange while a smaller contribution comes from the triplet Higgs VEV. A global fit is performed to the experimental data and we find that throughout the parameter space the symmetry breaking scale is bounded by f > 4 TeV at 95% C.L. Stronger bounds on f are found for generic choices of the high energy gauge couplings. We find that even in the best case scenario one would need fine tuning of less than a percent to get a Higgs mass as light as 200 GeV.Comment: 20 pages, 5 figures included, typos fixed, comments on the effects of extra vector-like heavy fermions adde

    Rare Charm Decays in the Standard Model and Beyond

    Get PDF
    We perform a comprehensive study of a number of rare charm decays, incorporating the first evaluation of the QCD corrections to the short distance contributions, as well as examining the long range effects. For processes mediated by the cu+c\to u\ell^+\ell^- transitions, we show that sensitivity to short distance physics exists in kinematic regions away from the vector meson resonances that dominate the total rate. In particular, we find that Dπ+D\to\pi\ell^+\ell^- and Dρ+D\to\rho\ell^+\ell^- are sensitive to non-universal soft-breaking effects in the Minimal Supersymmetric Standard Model with R-parity conservation. We separately study the sensitivity of these modes to R-parity violating effects and derive new bounds on R-parity violating couplings. We also obtain predictions for these decays within extensions of the Standard Model, including extensions of the Higgs, gauge and fermion sectors, as well as models of dynamical electroweak symmetry breaking.Comment: 45 pages, typos fixed, discussions adde

    Filtration–UV irradiation as an option for mitigating the risk of microbiologically influenced corrosion of subsea construction alloys in seawater

    Get PDF
    The effect of filtration-UV irradiation of seawater on the biofilm activity on several offshore structural alloys was evaluated in a continuous flow system over 90 days. Biofilms ennobled the electrode potential by +400–500 mV within a few days of exposure to raw untreated seawater. Filtration-UV irradiation of the seawater delayed the ennoblement of the steels for up to 40 days and lowered localized corrosion rates in susceptible alloys. Ennobling biofilms were composed of microbial cells, diatoms and extracellular polymeric substances and the bacterial community in biofilms was affected by both the alloy composition and seawater treatment

    Dynamical locality of the free scalar field

    Full text link
    Dynamical locality is a condition on a locally covariant physical theory, asserting that kinematic and dynamical notions of local physics agree. This condition was introduced in [arXiv:1106.4785], where it was shown to be closely related to the question of what it means for a theory to describe the same physics on different spacetimes. In this paper, we consider in detail the example of the free minimally coupled Klein--Gordon field, both as a classical and quantum theory (using both the Weyl algebra and a smeared field approach). It is shown that the massive theory obeys dynamical locality, both classically and in quantum field theory, in all spacetime dimensions n2n\ge 2 and allowing for spacetimes with finitely many connected components. In contrast, the massless theory is shown to violate dynamical locality in any spacetime dimension, in both classical and quantum theory, owing to a rigid gauge symmetry. Taking this into account (equivalently, working with the massless current) dynamical locality is restored in all dimensions n2n\ge 2 on connected spacetimes, and in all dimensions n3n\ge 3 if disconnected spacetimes are permitted. The results on the quantized theories are obtained using general results giving conditions under which dynamically local classical symplectic theories have dynamically local quantizations.Comment: 34pp, LaTeX2e. Version to appear in Annales Henri Poincar

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore