1,807 research outputs found

    Observational constraints on thawing quintessence models

    Get PDF
    We use a dynamical systems approach to study thawing quintessence models, using a multi-parameter extension of the exponential potential which can approximate the form of typical thawing potentials. We impose observational constraints using a compilation of current data, and forecast the tightening of constraints expected from future dark energy surveys, as well as discussing the relation of our results to analytical constraints already in the literature.Comment: 6 pages MNRAS style with 8 figures included. Minor updates to match MNRAS accepted versio

    Realizing Higher-Level Gauge Symmetries in String Theory: New Embeddings for String GUTs

    Get PDF
    We consider the methods by which higher-level and non-simply laced gauge symmetries can be realized in free-field heterotic string theory. We show that all such realizations have a common underlying feature, namely a dimensional truncation of the charge lattice, and we identify such dimensional truncations with certain irregular embeddings of higher-level and non-simply laced gauge groups within level-one simply-laced gauge groups. This identification allows us to formulate a direct mapping between a given subgroup embedding, and the sorts of GSO constraints that are necessary in order to realize the embedding in string theory. This also allows us to determine a number of useful constraints that generally affect string GUT model-building. For example, most string GUT realizations of higher-level gauge symmetries G_k employ the so-called diagonal embeddings G_k\subset G\times G \times...\times G. We find that there exist interesting alternative embeddings by which such groups can be realized at higher levels, and we derive a complete list of all possibilities for the GUT groups SU(5), SU(6), SO(10), and E_6 at levels k=2,3,4 (and in some cases up to k=7). We find that these new embeddings are always more efficient and require less central charge than the diagonal embeddings which have traditionally been employed. As a byproduct, we also prove that it is impossible to realize SO(10) at levels k>4. This implies, in particular, that free-field heterotic string models can never give a massless 126 representation of SO(10).Comment: 69 pages, LaTeX, 5 figures (Encapsulated PostScript). Revised to match published versio

    Investigating potential planetary nebula/cluster pairs

    Get PDF
    Fundamental parameters characterizing the end-state of intermediate-mass stars may be constrained by discovering planetary nebulae (PNe) in open clusters (OCs). Cluster membership may be exploited to establish the distance, luminosity, age, and physical size for PNe, and the intrinsic luminosity and mass of its central star. Four potential PN-OC associations were investigated, to assess the cluster membership for the PNe. Radial velocities were measured from intermediate-resolution optical spectra, complemented with previous estimates in the literature. When the radial velocity study supported the PN/OC association, we analyzed if other parameters (e.g., age, distance, reddening, central star brightness) were consistent with this conclusion. Our measurements imply that the PNe VBe3 and HeFa1 are not members of the OCs NGC5999 and NGC6067, respectively, and likely belong to the background bulge population. Conversely, consistent radial velocities indicate that NGC2452/NGC2453 could be associated, but our results are not conclusive and additional observations are warranted. Finally, we demonstrate that all the available information point to He2-86 being a young, highly internally obscured PN member of NGC4463. New near-infrared photometry acquired via the Vista Variables in the Via Lactea ESO public survey was used in tandem with existing UBV photometry to measure the distance, reddening, and age of NGC4463, finding d=1.55+-0.10 kpc, E(B-V)=0.41+-0.02, and tau=65+-10 Myr, respectively. The same values should be adopted for the PN if the proposed cluster membership will be confirmed.Comment: Accepted for publication in A&

    QCD-like theories at nonzero temperature and density

    Full text link
    We investigate the properties of hot and/or dense matter in QCD-like theories with quarks in a (pseudo)real representation of the gauge group using the Nambu-Jona-Lasinio model. The gauge dynamics is modeled using a simple lattice spin model with nearest-neighbor interactions. We first keep our discussion as general as possible, and only later focus on theories with adjoint quarks of two or three colors. Calculating the phase diagram in the plane of temperature and quark chemical potential, it is qualitatively confirmed that the critical temperature of the chiral phase transition is much higher than the deconfinement transition temperature. At a chemical potential equal to half of the diquark mass in the vacuum, a diquark Bose-Einstein condensation (BEC) phase transition occurs. In the two-color case, a Ginzburg-Landau expansion is used to study the tetracritical behavior around the intersection point of the deconfinement and BEC transition lines, which are both of second order. We obtain a compact expression for the expectation value of the Polyakov loop in an arbitrary representation of the gauge group (for any number of colors), which allows us to study Casimir scaling at both nonzero temperature and chemical potential.Comment: JHEP class, 31 pages, 7 eps figures; v2: error in Eq. (3.11) fixed, two references added; matches published versio

    Mindful breath awareness meditation facilitates efficiency gains in brain networks: A steady-state visually evoked potentials study

    Get PDF
    The beneficial effects of mindfulness-based therapeutic interventions have stimulated a rapidly growing body of scientific research into underlying psychological processes. Resulting evidence indicates that engaging with mindfulness meditation is associated with increased performance on a range of cognitive tasks. However, the mechanisms promoting these improvements require further investigation. We studied changes in behavioural performance of 34 participants during a multiple object tracking (MOT) task that taps core cognitive processes, namely sustained selective visual attention and spatial working memory. Concurrently, we recorded the steady-state visually evoked potential (SSVEP), an EEG signal elicited by the continuously flickering moving objects, and indicator of attentional engagement. Participants were tested before and after practicing eight weeks of mindful breath awareness meditation or progressive muscle relaxation as active control condition. The meditation group improved their MOT-performance and exhibited a reduction of SSVEP amplitudes, whereas no such changes were observed in the relaxation group. Neither group changed in self-reported positive affect and mindfulness, while a marginal increase in negative affect was observed in the mindfulness group. This novel way of combining MOT and SSVEP provides the important insight that mindful breath awareness meditation may lead to refinements of attention networks, enabling more efficient use of attentional resources

    Neutral and Charged Polymers at Interfaces

    Full text link
    Chain-like macromolecules (polymers) show characteristic adsorption properties due to their flexibility and internal degrees of freedom, when attracted to surfaces and interfaces. In this review we discuss concepts and features that are relevant to the adsorption of neutral and charged polymers at equilibrium, including the type of polymer/surface interaction, the solvent quality, the characteristics of the surface, and the polymer structure. We pay special attention to the case of charged polymers (polyelectrolytes) that have a special importance due to their water solubility. We present a summary of recent progress in this rapidly evolving field. Because many experimental studies are performed with rather stiff biopolymers, we discuss in detail the case of semi-flexible polymers in addition to flexible ones. We first review the behavior of neutral and charged chains in solution. Then, the adsorption of a single polymer chain is considered. Next, the adsorption and depletion processes in the many-chain case are reviewed. Profiles, changes in the surface tension and polymer surface excess are presented. Mean-field and corrections due to fluctuations and lateral correlations are discussed. The force of interaction between two adsorbed layers, which is important in understanding colloidal stability, is characterized. The behavior of grafted polymers is also reviewed, both for neutral and charged polymer brushes.Comment: a review: 130 pages, 30 ps figures; final form, added reference

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications

    A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)

    Get PDF
    We present a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of 29.7 fb1{\rm fb}^{-1} recorded at the Υ(4S)\Upsilon(4S) resonance and 3.9 fb1{\rm fb}^{-1} off-resonance. One of the neutral B mesons, which are produced in pairs at the Υ(4S)\Upsilon(4S), is fully reconstructed in the CP decay modes J/ψKS0J/\psi K^0_S, ψ(2S)KS0\psi(2S) K^0_S, χc1KS0\chi_{c1} K^0_S, J/ψK0J/\psi K^{*0} (K0KS0π0K^{*0}\to K^0_S\pi^0) and J/ψKL0J/\psi K^0_L, or in flavor-eigenstate modes involving D()π/ρ/a1D^{(*)}\pi/\rho/a_1 and J/ψK0J/\psi K^{*0} (K0K+πK^{*0}\to K^+\pi^-). The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. The proper time elapsed between the decays is determined by measuring the distance between the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample finds Δmd=0.516±0.016(stat)±0.010(syst)ps1\Delta m_d = 0.516\pm 0.016 {\rm (stat)} \pm 0.010 {\rm (syst)} {\rm ps}^{-1}. The value of the asymmetry amplitude sin2β\sin2\beta is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor-eigenstate sample and about 642 tagged B0B^0 decays in the CP-eigenstate modes. We find sin2β=0.59±0.14(stat)±0.05(syst)\sin2\beta=0.59\pm 0.14 {\rm (stat)} \pm 0.05 {\rm (syst)}, demonstrating that CP violation exists in the neutral B meson system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
    corecore