229 research outputs found

    Magnetic field induced control of breather dynamics in a single plaquette of Josephson junctions

    Full text link
    We present a theoretical study of inhomogeneous dynamic (resistive) states in a single plaquette consisting of three Josephson junctions. Resonant interactions of such a breather state with electromagnetic oscillations manifest themselves by resonant current steps and voltage jumps in the current-voltage characteristics. An externally applied magnetic field leads to a variation of the relative shift between the Josephson current oscillations of two resistive junctions. By making use of the rotation wave approximation analysis and direct numerical simulations we show that this effect allows to effectively control the breather instabilities, e. g. to increase (decrease) the height of the resonant steps and to suppress the voltage jumps in the current-voltage characteristics.Comment: 4 pages, 3 figure

    Experimental Critical Current Patterns in Josephson Junction Ladders

    Full text link
    We present an experimental and theoretical study of the magnetic field dependence of the critical current of Josephson junction ladders. At variance with the well-known case of a one-dimensional (1D) parallel array of Josephson junctions the magnetic field patterns display a single minimum even for very low values of the self-inductance parameter ÎČL\beta_{\rm L}. Experiments performed changing both the geometrical value of the inductance and the critical current of the junctions show a good agreement with numerical simulations. We argue that the observed magnetic field patterns are due to a peculiar mapping between the isotropic Josephson ladder and the 1D parallel array with the self-inductance parameter ÎČLeff=ÎČL+2\beta_{\rm L}^{\rm eff}=\beta_{\rm L}+2.Comment: 4 pages, 4 picture

    Observation of breather-like states in a single Josephson cell

    Full text link
    We present experimental observation of broken-symmetry states in a superconducting loop with three Josephson junctions. These states are generic for discrete breathers in Josephson ladders. The existence region of the breather-like states is found to be in good accordance with the theoretical expectations. We observed three different resonant states in the current-voltage characteristics of the broken-symmetry state, as predicted by theory. The experimental dependence of the resonances on the external magnetic field is studied in detail.Comment: 7 pages, 8 figure

    Stability of mode-locked kinks in the ac driven and damped sine-Gordon lattice

    Full text link
    Kink dynamics in the underdamped and strongly discrete sine-Gordon lattice that is driven by the oscillating force is studied. The investigation is focused mostly on the properties of the mode-locked states in the {\it overband} case, when the driving frequency lies above the linear band. With the help of Floquet theory it is demonstrated that the destabilizing of the mode-locked state happens either through the Hopf bifurcation or through the tangential bifurcation. It is also observed that in the overband case the standing mode-locked kink state maintains its stability for the bias amplitudes that are by the order of magnitude larger than the amplitudes in the low-frequency case.Comment: To appear in Springer Series on Wave Phenomena, special volume devoted to the LENCOS'12 conference; 6 figure

    Using grounded theory for theory building in operations management research:a study on inter-firm relationship governance

    Get PDF
    Purpose – Qualitative theory building approaches, such as grounded theory method (GTM), are still not very widespread and rigorously applied in operations management (OM) research. Yet it is agreed that more systematic observation of current industrial phenomena is necessary to help managers deal with their problems. The purpose of this paper is to provide an example to help guide other researchers on using GTM for theory building in OM research. Design/methodology/approach – A GTM study in the German automotive industry consisting of 31 interviews is followed by a validation stage comprising a survey (110 responses) and a focus group. Findings – The result is an example of conducting GTM research in OM, illustrated by the development of the novel collaborative enterprise governance framework for inter-firm relationship governance in the German automotive industry. Research limitations/implications – GTM is appropriate for qualitative theory building research, but the resultant theories need further testing. Research is necessary to identify the transferability of the collaborative enterprise governance concept to other industries than automotive, to other organisational areas than R&D and to product and service settings that are less complex and innovative. Practical implications – The paper helps researchers make more informed use of GTM when engaging in qualitative theory building research in OM. Originality/value – There is a lack of explicit and well-informed use of GTM in OM research because of poor understanding. This paper addresses this deficiency. The collaborative enterprise governance framework is a significant contribution in an area of growing importance within OM

    A Real Space Description of Magnetic Field Induced Melting in the Charge Ordered Manganites: I. The Clean Limit

    Full text link
    We study the melting of charge order in the half doped manganites using a model that incorporates double exchange, antiferromagnetic superexchange, and Jahn-Teller coupling between electrons and phonons. We primarily use a real space Monte Carlo technique to study the phase diagram in terms of applied field (h)(h) and temperature (T)(T), exploring the melting of charge order with increasing hh and its recovery on decreasing hh. We observe hysteresis in this response, and discover that the `field melted' high conductance state can be spatially inhomogeneous even without extrinsic disorder. The hysteretic response plays out in the background of field driven equilibrium phase separation. Our results, exploring hh, TT, and the electronic parameter space, are backed up by analysis of simpler limiting cases and a Landau framework for the field response. This paper focuses on our results in the `clean' systems, a companion paper studies the effect of cation disorder on the melting phenomena.Comment: 16 pages, pdflatex, 11 png fig

    Tunneling of quantum rotobreathers

    Full text link
    We analyze the quantum properties of a system consisting of two nonlinearly coupled pendula. This non-integrable system exhibits two different symmetries: a permutational symmetry (permutation of the pendula) and another one related to the reversal of the total momentum of the system. Each of these symmetries is responsible for the existence of two kinds of quasi-degenerated states. At sufficiently high energy, pairs of symmetry-related states glue together to form quadruplets. We show that, starting from the anti-continuous limit, particular quadruplets allow us to construct quantum states whose properties are very similar to those of classical rotobreathers. By diagonalizing numerically the quantum Hamiltonian, we investigate their properties and show that such states are able to store the main part of the total energy on one of the pendula. Contrary to the classical situation, the coupling between pendula necessarily introduces a periodic exchange of energy between them with a frequency which is proportional to the energy splitting between quasi-degenerated states related to the permutation symmetry. This splitting may remain very small as the coupling strength increases and is a decreasing function of the pair energy. The energy may be therefore stored in one pendulum during a time period very long as compared to the inverse of the internal rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl

    The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media

    Get PDF
    The original publication can be found at www.springerlink.comDeep bed filtration of particle suspensions in porous media occurs during water injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines migration in oil fields, industrial filtering, bacteria, viruses or contaminants transport in groundwater etc. The basic features of the process are particle capture by the porous medium and consequent permeability reduction. Models for deep bed filtration contain two quantities that represent rock and fluid properties: the filtration function, which is the fraction of particles captured per unit particle path length, and formation damage function, which is the ratio between reduced and initial permeabilities. These quantities cannot be measured directly in the laboratory or in the field; therefore, they must be calculated indirectly by solving inverse problems. The practical petroleum and environmental engineering purpose is to predict injectivity loss and particle penetration depth around wells. Reliable prediction requires precise knowledge of these two coefficients. In this work we determine these quantities from pressure drop and effluent concentration histories measured in one-dimensional laboratory experiments. The recovery method consists of optimizing deviation functionals in appropriate subdomains; if necessary, a Tikhonov regularization term is added to the functional. The filtration function is recovered by optimizing a non-linear functional with box constraints; this functional involves the effluent concentration history. The permeability reduction is recovered likewise, taking into account the filtration function already found, and the functional involves the pressure drop history. In both cases, the functionals are derived from least square formulations of the deviation between experimental data and quantities predicted by the model.Alvarez, A. C., Hime, G., Marchesin, D., Bedrikovetski, P

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore