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ABSTRACT. Deep bed filtration of particle suspensions in porous media occurs during wa-
ter injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines
migration in oil fields, industrial filtering, bacteria, viruses or contaminants transport in
groundwater, etc. The basic features of the process are particle capture by the porous
medium and consequent permeability reduction.

Models for deep bed filtration contain two quantities that represent rock and fluid prop-
erties: the filtration function, which is the fraction of particles captured per unit particle
path length, and formation damage function, which is the ratio between reduced and ini-
tial permeabilities. These quantities cannot be measured directly in the laboratory or in
the field; therefore, they must be calculated indirectly by solving inverse problems. The
practical petroleum and environmental engineering purpose is to predict injectivity loss and
particle penetration depth around wells. Reliable prediction requires precise knowledge of
these two coefficients.

In this work we determine these quantities from pressure drop and effluent concentration
histories measured in one-dimensional laboratory experiments. The recovery method con-
sists of optimizing deviation functionals in appropriate subdomains; if necessary, a Tikhonov
regularization term is added to the functional. The filtration function is recovered by op-
timizing a non—linear functional with box constraints; this functional involves the effluent
concentration history. The permeability reduction is recovered likewise, taking into account
the filtration function already found, and the functional involves the pressure drop history.
In both cases, the functionals are derived from least square formulations of the deviation
between experimental data and quantities predicted by the model.

Deep bed filtration, Suspension transport, Porous media, Inverse problem, Tikhonov requ-
larization, Formation damage, System of convection-reaction equations

1. INTRODUCTION

Severe injectivity decline during sea— or produced water injection is a serious problem
in offshore waterflood projects. This decline results from permeability impairment because
the rock captures particles from the injected water. Reliable modeling—based prediction of
injectivity decline is important for the design of injected water treatment or management by
water filtering, injection of sea- and produced water combinations, etc.

During flow of water with suspended particles through porous media, the particles are
gradually retained, reducing the permeability of the medium. This phenomenon is called
deep bed filtration with formation damage. Formation damage can be induced by the pen-
etration of drilling fluid into a reservoir. Other petroleum related applications for which
filtration and formation damage are important include sand production control, fines migra-
tion, disposal of produced water in aquifers and deep bed filtration in gravel packs. Particle
suspension filtration also occurs in industrial water filtering, in propagation through aquifers

of contaminants (including viruses, bacteria, etc), and in other environmental processes.
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Mathematical models for suspension transport in porous media consist of an advection—
diffusion equation of particle mass balance with a particle capture term and Darcy’s law
accounting for permeability reduction due to particle retention (see [12], [19], [26], [32],
[33], [38] and [44]). The models contain two empirical functions describing properties of the
aqueous suspension and of the porous medium: the filtration function, i.e., the probability for
a particle to be captured per unit particle path length, and the permeability reduction, i.e.,
the ratio between the reduced and the initial permeabilities. Particle deposition alters pore
space geometry and hydraulic resistivity; in turn, pore geometry alters conditions for further
deposition, so it is natural to take the deposited concentration as the basic independent
variable for the filtration and formation damage functions.

Laboratory coreflood tests with particle suspension are carried out routinely in order to
estimate injectivity decline during water injection into oil reservoirs (see [32] and [47]). In
these one-dimensional experiments, the retained profile is non—uniform: in the laboratory,
it is impossible to create a suspended-retained particle system with uniform deposited con-
centration. Therefore, the filtration and formation damage functions cannot be measured
directly. However, it is possible to measure the time series of suspended particle effluent
concentration and of pressure drop, and these two functions can be recovered indirectly from
these experimental measurements by solving inverse problems for deep bed filtration and
formation damage.

For modeling purposes, the filtration and damage functions are given suitable parametriza-
tions that are compatible with the physical properties of the phenomenon. The filtration
function reduces to a constant coefficient for the case of diluted suspensions; it can be cal-
culated from the mean effluent concentration. The formation damage function is usually
represented by a hyperbolic formula containing one empirical parameter — the so—called
formation damage coefficient — which can be calculated from the pressure drop along the
core ([19], [32], [47]). Alternatively, both coefficients can be calculated from pressure data
at three core points ([5], [6]).

In this work, we present a more flexible method for determining the filtration and forma-
tion damage with any arbitrary form using parameter optimization. Differently from other
methods, these quantities are not assumed to be constant, rather they are functions of the
deposited particle concentration. We introduce regularization to generalize the procedure
given in [18]. The recovery procedure for the filtration and permeability reduction functions
presented in this work consists of optimizing certain functionals using the projection gradient
method with box constraints developed in [8]. The functionals to be minimized are obtained
from a least squares formulation taking into account the difference between experimental
data and quantities predicted by the model. The box constraints reflect physical properties
of the solution such as positivity and monotonicity. The functions obtained from the core-
flood data may then be used for predicting well injectivity decline during water injection by
solving the direct problem for deep bed filtration.

This paper is organized as follows. In Section 2, we present the dispersion—free deep
bed filtration model with formation damage as a system of two hyperbolic equations for
suspended and retained concentrations and a pressure balance equation. We also explain how
to solve this system by integrating two families of ordinary differential equations. In Section
3, we describe the optimization procedures we use to solve the two inverse problems. In the
first one, we use the calculated efluent concentration history to define the functional that
is minimized to determine the filtration function. In the second one, we use the deposition
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calculated using this recovered filtration function to predict the pressure drop history and
we define the functional that is minimized to determine the permeability reduction function.
In Section 4, we validate the recovery methods and we briefly examine the sensitivity of
these inverse problems by means of synthetic data. In Section 5, we apply the method to
experimental data and discuss the recovered functions as obtained by solving the two inverse
problems.

2. FLOW OF WATER WITH PARTICLES IN POROUS MEDIA.

In this section we present the physical model for the flow of water with suspended particles
suffering retention in porous media. This model was developed in [5] based on [19]. Neglect-
ing particle diffusion and dispersion, the mass balance equation for linear flow accounting
for suspended and retained particles is

0 Oc
§(¢c+a)+U%:0. (2.1)

Here the volumetric concentrations of suspended and deposited particles are respectively
c(xz,t) € [0,1] and o(z,t) € [0,¢]. The dimensionless quantity ¢ € [0, 1] is called the rock
porosity: it is the fraction of the rock volume available to the fluid. It is further assumed that
the overall porous space is available for small particles, that size exclusion is not important,
and that one particle plugs one pore.

We consider the flow of diluted suspensions, where the “particle-pore reaction” can be
assumed to be of order one for small suspended concentrations, i.e., the retention rate is
proportional to the suspended concentration c:

do
Frie Ao)Ue. (2.2)

The dependence of the retention rate on o is expressed by A(¢), which is called the filtration
function: it is the probability for a particle to be captured per unit length of the trajectory
([19], [37]). The retention rate do /0t is proportional to the flow velocity U ([19], [21]).

The filtration function is assumed to be independent of the retained particle concentration,
i.e., constant in o, for most laboratory tests on bacteria transport, where a diluted colloid
flows during a short time corresponding to just a few injected pore volumes ([12], [29]). In
this case, the retained concentration is low, and particle deposition does not alter the rock
surface. In the case of longer flow periods or higher injected concentrations, we assume
a Langmuir retention kinetics where the retention rate is proportional to the number of
“vacancies”, so that A\ depends linearly on o (the so—called blocking function, see [23] and
[26]). In contrast, the random sequential adsorption (RSA) approach employs a filtration
function that is a non-linear function of ¢ (also in [23]).

During seawater flooding of oil reservoirs, a large amount of water is injected, correspond-
ing to millions of times the volume of the damaged zone around the well, and the retained
particles may occupy up to a 5-30% fraction of the porous volume near the well. Therefore,
the structure of the pore space and surface where particles are retained changes completely
during injection ([32], [35], [45], [47]), and the function A(c) can become non-linear and even
non—monotonic.

Remark 2.1. The retention rate in equation (2.2) can be interpreted in different ways. Sev-
eral authors drop the velocity factor ([10], [29]), and A becomes the probability for particles
to be captured per time unit. In this case, A is a function of velocity expressed in terms of
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dimensionless parameters. Nevertheless, in several important cases the form of this function
suggests that A is proportional to U ([28], [34]), and the retention kinetics equation becomes
(2.2). In [19] and [2], it is assumed that the capture rate by “vacancies” is proportional to
particle flux. In the dispersion—free case the flux is equal to Uc, which also leads to (2.2).

We assume that the permeability reduction expressed by k(o) is due to particle retention,
and that it is a decreasing function of the retained concentration ([32], [47]). The “momentum
balance” equation has the form of Darcy’s law relating the flow rate U to the pressure p:

_kok(o) Op

U= ay
w o Oz

(2.3)

Here, k¢ is the absolute rock permeability and k(o) is the permeability reduction due to the
retained particles . When expressed as a function of o, it is called the formation damage
function. Tt is normalized so that k(0) = 1, i.e., it is one for clean porous rock. In general,
the water viscosity p can be considered constant for small suspended particle concentrations.

Equations (2.1)—(2.3) form a closed system of three equations for there unknowns — ¢, o
and p. It is assumed that the filtration function is independent of the pressure p: therefore,
the first two equations decouple from the third and form a system for the two unknowns ¢
and o. The physical domain is ¢ > 0 and 0 < z < L, where L is the length of the core.

Remark 2.2. It is worth mentioning that the single capture mechanism expressed in sys-
tem (2.1)—(2.2) may also be used to describe deep bed filtration with several simultaneous
suspended particle capture mechanisms, such as size exclusion, attachment and gravity seg-
regation ([17]). Some network models for deep bed filtration consider the situation where
several particles must be deposited in a single pore until its complete plugging ([39]). In
this case, all intermediate interactions “suspended particle — partly plugged pore” can also
be aggregated into a single capture kinetics described by equation (2.2), see [37]. The sys-
tem (2.1)—(2.2) can be obtained by averaging micro-scale stochastic equations for the size
exclusion and the attachment mechanisms of particle retention ([38], [37]). For highly con-
centrated suspensions, the capture mechanism of bridging becomes dominant; the order of
the “particle—pore reaction” may be much larger than one ([1]). In this case, the retention
rate is not proportional to suspended concentration anymore. Modeling these processes is
outside the of scope of the current paper.

2.1. Boundary and measured data. As initial data, we assume that the rock is clean
and contains water with no particles; as boundary data, we assume that the solid particle
concentration entering the porous medium is given, and that the effluent concentration is
measured:

o(z,0) =0 and c¢(z,0)=0, (2.4)
c(0,t) = ¢;(t) >0, t>0, (2.5)
c(L,t) = ceap(t) >0, t>0. (2.6)

The pressure drop Ape,, = p(L,t) — p(0,t) is also measured in laboratory experiments. The
quantity o (0,t), however, needs to be determined utilizing the model. Along the line =z = 0,
we obtain from equations (2.2) and (2.5):
do(0,t)
dt
where U is given. Integrating equation (2.7) provides (0, t), which is positive and increasing.

= No(0,8))Uci(t), and o(0,0) =0, (2.7)
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2.2. Solution for suspension flow. The well-posedness of the boundary/initial value
problem (2.1)—(2.2) with boundary and initial data (2.4)—(2.5) was established in [3] and
[4], where U was taken as a constant and it was assumed that the filtration function A(o)
was C, i.e., it had one continuous derivative, and that (o) > 0 for o € [0, ¢]. A generaliza-
tion of this result follows. For t < (¢/U)x, o(x,t) and ¢(x,t) vanish. For t > (¢/U)x, one
can rewrite equations (2.1)—(2.2) on characteristic lines « — (U/¢)t = const in the form

do
% = —)\(O')O', (28)
dc

where d/dx means differentiation along characteristic lines x — (U/¢)t = const ([3]). Since
c(0,t) = ¢;(t) is specified and ¢(0,¢) is obtained from solving equation (2.7), the family of
equations (2.8)—(2.9) can be solved numerically using standard procedures for ODE’s.

Although the non-linear inverse problem is inherently ill-posed, the following remark
reflects that the direct problem is well-posed. This will be useful for proving that the
regularized approximation of the inverse problem is well-posed, in the sense of Tikhonov, in
some appropriate compact set (see Appendix A).

Remark 2.3. Since the solution ¢ and ¢ of the system (2.8) and (2.9) are given by an
ordinary differential equations along characteristic lines, the continuity of the solution is
a consequence of the theorem on continuity of ODE solutions with respect to parameter
changes (see [20], pag. 91). So the maps

MNo;0) — o(x,t;0), Xo;0) — c(x,t;0). (2.10)
are continuous in the uniform norm.

Differently from [3], where A(0) was strictly positive, we assume that A(c) is a non—
negative piecewise C! function that may vanish in its domain 0 < o < ¢, i.e., A(¢) > 0 for
0 <o <opand A(o) =0 for 0y < 0 < ¢. The following Lemma, proved in [4], allows this
assumption.

Lemma 2.4. The solution of (2.1)—(2.3) with data (2.4)—(2.5) is given by (2.8)—(2.9) in the
trapezoidal domain 0 < x < L, 0 <t < (¢/U)x + 7; T can be infinite. If it is finite, o is
constant and equal to oo in the trapezoid 0 < (¢p/U)x + 71 <t and c(z,t) = ¢;(x — (U/P)t).
Also, ¢ is continuous in the trapezoid 0 < x < L, t > (¢/U)x, and o is continuous in the
infinite rectangle 0 < x < L, 0 <t < 0.

In [3] and [4] the well-posedness of the direct problem was proved. To solve the inverse
problems for the filtration function A(¢) and the formation damage function k(c), we need
to solve equations (2.1)—(2.5) and (2.7) many times as part of an iterative optimization
procedure. Thus, it is necessary to solve this system with high speed and accuracy.

3. RECOVERY METHODS

In this section, the values of the coefficients that parametrize the empirical functions
are recovered by using optimization procedures to minimize functionals that represent the
difference between the solution of the direct problem and the available experimental data.
Taking into account that parameter estimation in systems of partial differential equations
such as (2.4)—(2.9) is usually unstable ([4], [13]), i.e., the recovered parameters do not depend
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on the data in a stable way, we include a Tikhonov regularization term when necessary. This
regularization enables one to obtain stable approximations of ill-posed inverse problems [43].
The well-posedness of the regularized approximation of the inverse problem of recovering
the filtration and permeability reduction functions is proved in [4] in the operator theory
framework; a summary is given here in Appendix A.

It is important to notice that the first two equations in the governing system, (2.1) and
(2.2), are only weakly coupled to the last equation (2.3). Equations (2.1) and (2.2) determine
the deposition of the suspended particles, while equation (2.3) relates the flow rate U to the
pressure drop through the loss of permeability, which depends on the deposited concentration.
In fact, in laboratory experiments U is measured, and the decoupling is complete. We are
led naturally to split the inverse problem of determining the empirical functions into two
separate problems.

First, we recover the filtration function using either the method presented below or the
methods presented in [3] and [4]. This first inverse problem determines the filtration function
from the outlet concentration, i.e., the kinetic particle capture rate is calculated from the
particle concentration history. Then we recover the permeability reduction function using ei-
ther the method presented below or the method presented in [4]. This second inverse problem
determines the formation damage function from pressure drop, i.e., the dynamic coefficient
that specifies the hydraulic conductivity increase due to particle retention is calculated from
the history of the pressure loss on the core.

Remark 3.1. The inverse problem of determining the functions A(o) and k(o) in deep
bed filtration is analogous to that of determining the fractional flow function and the total
mobility in two—phase transport in porous media. Fractional flow is determined from the
fraction of water in the outlet two—phase flux ([46]), while total mobility is determined from
pressure drop and injection rate histories ([22]).

3.1. Optimization procedure. Good algorithms for constrained minimization are the es-
sential tool for the development of efficient methods for general nonlinear programming ([15]
and [30]). Such methods apply to problems of the form

find 2" = arg min F'(z) subject to x € {2

where z*, 2 € R"™ and n is the number of variables, F(z) : R® — R is a functional we
wish to minimize, and () is a convex region in R™. In essence, these algorithms proceed as
follows: at the k-th iteration, the current guess for the minimizer ¥ €  is incremented
in the direction of —VF(z*), yielding z*; the size of the increment is determined from the
difference |F(2*~!) — F(2*)|. Next, the resulting point is orthogonally projected onto the
feasible set 2, yielding 2*. The algorithm may search along the lines from z* to #* and 2*
for better minimizers, i.e., linear searches may be conducted before or after the projection.
This eventually brings * to a local minimizer, either with VF = 0 or at the boundary 052,
where the algorithm stops: there is no guarantee the minimizer is unique or global.

This approach is particulary interesting if the projection onto {2 is easy to compute: it
is trivial in the case where {2 C R" is defined by box boundaries I; < u;, i = 1,...,n. We
used an implementation of the spectral projection gradient method with box constraints
presented in detail in [8], developed by the very authors and very suitable to our problem.
The code was designed for large problems (i.e., n large) and is therefore extremely robust for
a relatively simple application as the one presented in this work. The number n of parameters
to recover does not exceed three in the examples given in the following two sections.
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3.2. Recovering the filtration function. In this section we define our functional for
solving the first inverse problem: namely, finding the filtration function from the effluent
concentration history measured in laboratory experiments.

Before the recovery procedure, a parametrization A(c; @) must be chosen for the filtration
function, where 6 is the set of parameters. The form of these parametric functions and
their parameter ranges are dictated by physical properties of the filtration function: concrete
examples are discussed in the following two sections. Then we minimize a functional relating
the filtration function and the efluent concentration:

A
Fe(0,a) = / (c(L,t;0) — Cenp(t))?dt + (|0 — 07| . (3.1)
B
In the first term of the right hand side, c.,,(t) represents the effluent particle concentration
history measured in the laboratory, ¢(L, t; ) is obtained by solving equations (2.4)—(2.9) for
a fixed set of parameters 0, B = (¢/U)L is the breakthrough time and A is the end time of
the experiment. When necessary, we use the second term in the right hand side, which is a
penalization term, where « is the Tikhonov regularization parameter. This term is required
to obtain stable solutions only if the parametrization A(c;#) has an inadequate form or too
many parameters; otherwise, the solution is regularized by the parametrization itself (see

[4], page 146, or [16], [36]).

3.3. Recovering the permeability reduction function. For one-dimensional flow in a
rock core, we divide equation (2.3) by 1/k(o(x,t))U, integrate the resulting equation in [0, L]
and obtain the following relationship between deposited particle distribution and pressure
drop history:

L dx ]{70
_/0 oG] = g, 0stsA (3.2)

As in the previous subsection, first we choose a parametrization k(c; 3) for the permeability
reduction function, with parameter set 3. Then we minimize the functional:

FP(8,) = / (Ap(t: ) — Apeay(t))? dt + 1218 — 5], (3.3)

B
where Ap(t; 3) is the right hand side of equation (3.2), Ape,,(t) is the experimental data, and
v is the regularization parameter. Once again, the penalization term is required to produce
stable solutions in certain cases, e.g. when parameterization k(o; (3) is poorly chosen. Notice
that the evaluation of FP((3,7) requires the system of equations (2.4)—(2.9) to be solved
using the filtration function recovered from the effluent concentration history: once we have
the deposition of particles o(z,t), then the integrals in equation (3.3) can be evaluated
numerically.

Remark 3.2. The two inverse problems formulated in this section are consistent with the
physical meaning of the unknown functions A(¢) and k(o). System (2.1)—(2.2) describes the
“kinematics” of deep bed filtration — retention kinetics between suspended and deposited
concentrations. The unknown filtration function A(o) is the probability for a particle to be
captured during its travel along the unit length, i.e. A(o) is a kinematic characteristic of the
process, and it is determined from the outlet particle concentration ¢(L,t).

The unknown permeability reduction function k(o) is a relative rate of particle suspen-
sion decrease under constant pressure gradient during the filtration. It is defined from the
“momentum balance” equation (2.3) and it is therefore a dynamical property of deep bed
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filtration. It is determined from the histories of pressure drop on the core Ap(t) and of flow
rate U(t) , i.e., from dynamical data.

Granted this consistency, it is important to notice that no specific parametric form was
imposed on either A or £ up to this point. The recovery procedure, although developed
with this particular problem in view, is mathematically abstract and formally it makes
no assumptions about the two functions to be recovered or about the input data. The
optimization procedure, however, may impose restrictions: the procedure from [8] we chose
requires that the functionals have continuous first—derivatives on # and 3, which is the case
in the examples given in sections 4 and 5.

4. NUMERICAL RESULTS WITH SYNTHETIC DATA

In this section we present an example where the functionals (3.1) and (3.3) are minimized

numerically. We use synthetic data ¢.(t) and Ap(t) to calibrate the model and to test
the algorithm. We define the parametric form of the filtration and permeability reduction
functions as
1

1+ G0’
which are similar to those typically found in the literature ([31]). We fix 6; = 1, 6, = 171
and = 300: these are the parameters we wish to recover after solving the inverse problem
with the synthetic data. We also assume the inlet concentration ¢;(t) to be constant. The
synthetic data are constructed in two steps. First, we solve the direct problem for some
filtration and permeability damage functions; second, we add random perturbations to this
exact solution to simulate observational error inherent to real data.

In order to avoid solving the inverse problem in a space with the same dimension and of
the same type as the one in which the functions in (4.1) are defined (see [24] for a discussion
on so—called inverse crimes), we fit rational functions A(¢) and k(o) to both A(¢) and k(o)
in (4.1), obtaining

o) =
1+ 85.40 + 15,73702

that approximate A(c) and k(o) given in (4.1), but have more parameters. We use the
functions (4.2) to solve the direct problem given by the system of equations (2.4)—(2.9)

A(o) = max{0,0; — 020} and k(o) (4.1)

1 —1490

d k(o) =
and k(o) = T 951 1164007

(4.2)

and the integral equation (3.2). Incidentally, the resulting profiles of ¢.(t) and Ap(t) have
maximum relative errors of 6.68 x 1073 and 4.72 x 10~*, respectively, when compared to the
solutions found using the prescribed functions (4.1).

We create four sets of perturbed synthetic data from the one single exact ¢.(t) and Ap(t)
solution obtained using A(¢) and k(o). More specifically, we introduce random perturbations
of the order of 0.01, 0.05, 0.10 and 0.15, i.e., the relative error (noise/signal ratio) of the
perturbed data is limited by these given values. The frequency of the added noise is similar
to that observed in laboratory experiments ([1]). These are shown in figure 4.1.

Solving the inverse problem for each of these four data sets, we recover the parameters for
equations (4.1). Now we compare the unperturbed synthetic data to the results of the direct
problem based on these recovered parameters, and find the relative error to be similar to the
one between the unperturbed synthetic data and the solution obtained using the prescribed
functions (4.1), as shown in table 4.



FILTRATION FUNCTION AND PERMEABILITY REDUCTION IN POROUS MEDIA 9

-7
x 10 18
6

17

5.5 16
~ 0

25 g5
o c
H 9

] [ 14
5 £

5 313
= E
F E

d S12
3 q

11

35 — Prescribed 1 — Prescribed )
— - -Clean synthetic - - -Clean synthetic
15% noise synthetic| 15% noise synthetic|
3 n n 0.9 T L

100

200

300
Time (PVI)

400

500 600 700

o

300 400
Time (PVI)

100 200

500 600 700

a) Effluent concentration b) Pressure drop

FIGURE 4.1. Synthetic data.

Noise Max error in ¢, Max error in Ap

1% 3.14 x 1073 521 x 1074
5% 5.47 x 1073 1.32 x 1073
10% 2.09 x 1072 1.58 x 1072
15% 2.57 x 1072 1.70 x 1072

TABLE 4.1. Relative errors between the unperturbed synthetic data and the
solutions obtained using the parameters recovered from the perturbed data
sets.

In Figure 4.2 the corresponding recovered filtration and permeability reduction functions
are shown. We see that these functions are recovered with reasonable accuracy, and smaller
relative errors for cleaner data, as expected.
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FIGURE 4.2. Empirical functions recovered from noisy synthetic data.
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The numerical examples based on synthetic data suggest that the recovery method de-
scribed here is appropriate for finding the permeability reduction and filtration functions
from experimental data.

Remark 4.1. The optimizations were carried out using the code implemented by the au-
thors of [8], after the algorithms detailed therein, which we introduced in Section 3. These
algorithms implement many complementary minimization strategies and stopping criteria.
Many of these criteria are based on values dependent on the scales of the problem, such
as the magnitude of the functional being minimized or its gradient vector, and therefore
we tuned the optimization constants to the scale of our data. The longest running time
we experienced was a little over one minute on a 2GHz processor, with fifty evaluations of
the cost functional. Since the complexity of the functional is related to the parametrization
chosen, we obtain a similar performance when we apply the same procedures to experimental
data, as detailed in the next section. This low computational cost is intrinsic to our recovery
approach, and one of the advantages of the method.

4.1. Sensitivity analysis. Sensitivity analysis allows one to identify the “best” models, so
that the number of parameters is neither insufficient nor is it so large as to render the solution
of the parametrized inverse problem not unique. Also, once an optimal set of parameters
is obtained, the computation of the corresponding sensitivity matrix allows studying the
stability of the proposed inverse method ([41]). Here we perform the sensitivity analysis
only for the filtration function given in (4.1).

To calculate the sensitivity matrix, we use the analytical solution of system (2.1)-(2.2). For
simplicity, we transform the physical domain into dimensionless coordinates by the scaling
equations

x U
X == T=— 4.
7 and 5 Lt, (4.3)
so X is in the [0, 1] range; one unit of dimensionless time 7' is how long it takes to inject a
volume of fluid corresponding to the porous volume of the sample, hence the term porous
volume injected (PVI). We also define (X, T) = ¢ 'o(x,t) and A(o(X,T)) = ¢LA(o(z, 1)),
so that the equations (2.1)-(2.2) become

0 dc
do

The solution for the system (4.4)—(4.5) with A(¢) given by equation (4.1), derived in [4], is

o(X,T:0) =0, ¢(X,T;0) =0 for T <X, (4.6)
0, e—cio02T o(01+ciob2) X -1
o(X,T;0) = 5 1+ T octaT—X) and (4.7)

C/L'OQQO-(X, T)

C(X, T; 9) - 91(1 —_ efciOQQ(fo))

for T>X. (4.8)
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We wish to study the sensitivity of the recovered parametric function ¢(1, T’ 0); the coef-
ficients of the sensitivity matrix (see [41] and [42]) are defined by

0c(1,T;0)
S (T = ——~2"""7
0,(T) 20,
For a fixed 6, the magnitude of the function Sy, (T') reflects the sensitivity of the solution

with respect to the i-th parameter at a particular time. The sensitivity coefficients for the
filtration function given in equation (4.1) are
. p—CioB2(T—1) 01 2 (7 1 —ciob2(T—1) ( .01 -1
Cio€ e c:, e e
501 - PR 592 = ( ) ( 2 ) (410)
(1 + emcuots(TD (e — 1)) (1 + emeuotaT-D(eh — 1))

From (4.10) we obtain

. (4.9)

et

Cio(e?r — 1) (T — 1)
Equation (4.11) implies that the sensitivity of ¢(1,7';0) is different relatively to 6; and 6s;
as a function of 7' > 1, the solution is relatively more sensitive to 6; for smaller values of
T'. In the particular example we developed in this section, the values of Sy, are such that
lc(1,T56)/Se, (T)| = 1 and |c(1,T;6)/Se,(T)| ~ 10 in the time interval 1 < T < 650, i.e.,
perturbations of #; will reflect on ¢(1,7;0) with the same order of magnitude, whereas the
effects of perturbations of fy are reduced by a factor of 1073. Put simply, this solution is
sensitive to the first parameter #;, and not to #;. These facts discourage the use of more
parameters for the filtration function. A two—parameter, non—constant A(c) such as the ones
used in this section and in the next, is enough to model most of the experimental data we
have analysed. In the last examples in Section 5, we use three—parameter filtration functions
to account for a different behaviour of the effluent concentration history.

A similar analysis can be conducted for the pressure drop history Ap(7T; 6, 3). However,
Ap is a function of o(X, T 0) (see equation (3.2)); therefore, the observations regarding the
sensitivity of ¢(1,7';0) are applicable to Ap as well. For the experiment presented in this
section, the numerical value of the sensitivity coefficient (Ap) /9 is two orders of magnitude
smaller than the actual value of Ap, so the pressure drop is rather insensitive to this single
parameter.

591/592 =

(4.11)

5. NUMERICAL RESULTS FOR EXPERIMENTAL DATA

Data from Kuhnen et alii. We applied the method to the efluent particle concentration
experimental data described by Kuhnen et alii in [26], shown in Figure 5.1. In these experi-
ments, hematite suspensions of equal concentration and varying ionic strengths were injected
at an equal rate into sandstone, to investigate the relation between filtration phenomena and
electrostatic attraction between oppositely charged particle and porous medium surfaces. No
cake formation was observed in these experiments.

In order to apply our empirical model, we tested numerous parametrizations on each of
the six data series contained therein, and obtained the following results.

All the data series show an increasing trend. The first three of them go close to the zero
filtration rate situation, where ¢, = ¢; and A(0) = 0. For the model to reproduce the first
case accurately, i.e., to approach A(0) = 0 as o increases, this trend must be taken into
account: all successful parametrizations were of the form \ge /(). where f(c) was a non-
negative increasing function. Polynomials of various degrees yielded different results: the
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F1GURE 5.1. Effluent concentration histories from [26], up to 300 PVI. We
will refer to these six series by number, from top to bottom.

best all-around parameterization was )\06_902, for all six data series. For the latter times of
the first two series, in the late time ranges where ¢, =~ ¢;, a good match was only obtained
using f(o) = ot

We remark that the method proposed in [3] does not work for the zero filtration rate
situation observed in the first three data sets, as the quantity actually recovered is 1/A(o)
rather than A(0). The remaining three do not approach this limit.

Figure 5.2 shows good matches obtained using the quadratic exponent. Figure 5.3 shows
the difference of the two best parameterizations for series approaching the limit c./¢; = 1.

00
00 609
00

)\0 =1.97e+00

0 =3.25e-04

O clean data
= clean data recovery = clean data recovery

O clean data 01r

++++ regularized solution ++++ regularized solution

L L L I ) L L L )
"o 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

a) Data series 3 b) Data series 4
FIGURE 5.2. Best fits for effluent concentration using A(c) = Age 7",

Restricting the input data to the first 70 PVI of the last four data series, shown as markers
in Figure 5.4a, we recovered the filtration functions shown in Figure 5.4b. We calculated
the effluent concentrations using these filtrations and plotted them over the input data in
Figure 5.4a, with which they coincide visually.

Data from Soma and Papadopoulos. Soma et al. performed a series of four experi-
ments injecting oil-in-water emulsions into quartz sand (see [40]), using similar conditions
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FI1GURE 5.3. Profiles recovered using two fits for A in data series 1.
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a) Cropped data and model prediction. b) Corresponding filtration functions.
FIGURE 5.4. Excellent recovery obtained using the optimization solution
shown over smooth approximations of the actual data.

and varying the ionic strength of the emulsion, for which they measured both effluent con-
centration and total permeability reduction, i.e., the pressure drop history. There was no
cake formation in their experiments.

We applied the empirical model (2.1)—(2.3) to the two experiments with higher ionic
strength, where there was enough deposition both to prevent the effluent concentration
curve from reaching c./c; &~ 1 quickly, and to produce significant permeability reduction.

However, the effluent concentration history curves are not monotone in these two exper-
iments: this is another situation where the method presented in [3] fails to produce good
results. The authors [40] attribute this lack of monotonicity to a greater attraction of oil
droplets in the suspension to previously deposited oil rather than to the bare pore surface.
In terms of the empirical A(o) coefficient, this translates into a non—-monotone behaviour of
the filtration function, one that increases after a certain value of o is reached. To account
for this behavior, we chose the parametrization

Mo) = 01(e™™7 +050); 01,005 > 0. (5.1)
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For the permeability reduction function, we use the inverse of a second degree polynomial,
which is compatible with the literature ([31]) and suitable for our calculations. Higher degree
polynomials did not yield better results.

For both data sets, the model reproduced well both the effluent concentration and per-
meability reduction curves, as shown in Figure 5.5. The parametric empirical functions
recovered solving the inverse problems are shown in Figure 5.6.

0.9r 1r
0

0.8f

0 Bxpl
O Exp2
01 I I I I I I I 02 I I I I I I I I
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

PVI PVI

a) Effluent concentration b) Permeability reduction

FIGURE 5.5. Recovered histories and original data in two experiments.

—Expl
o Exp2

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 30 35 40 45 50

25
alC, alC,

a) Filtration function b) Permeability reduction function

FIGURE 5.6. Recovered empirical functions in two experiments.

6. CONCLUSION

The recovery method described here consists of solving two inverse problems: in the first
one the filtration function is determined from the efuent concentration evolution, and in
the second one the formation damage function is determined from the pressure drop history.
In the cases examined, the method yields good matches between synthetic/experimental and
predicted data.
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The results given in Sections 4 and 5 indicate that the method is robust and flexible, for
it allows the analysis of experimental data that the other recovery methods in the literature
cannot analyze. The method proposed in [3] requires that A\(¢) does not approach zero, i.e.,
it cannot deal with data where c./c; approaches one. The three—point method presented
in [5] and [6] assumes A(c) to be a constant Ay, which is equivalent to assuming that c./c;
is constant in time after breakthrough: this is not the behaviour observed in any of the
experiments presented in Section 5. The distinguishing feature of the method presented in
this work is that it imposes few restrictions on the form of the functions to be recovered,
providing a flexible tool for studying experimental data. At the same time, it is easier to
implement than other methods equally adequate for practical purposes such as the method
for recovering the permeability reduction developed in [4]. Tt is also flexible in the sense
that, by accommodating different physical conditions under a minimal set of macroscopic
parameters, all built into the recovered permeability damage and filtration functions, it can
be readily applied to variations of the model (2.1)—(2.3) which cannot be solved numerically
by (2.8)—(2.9).

One must keep in mind, however, that the method assumes that both functions to be
recovered can be represented by simple parametric expressions, and that the phenomena
conforms to all modeling assumptions made in [19] and the other works derived from there,
based on which this inverse problem was formulated and solved. As this happens to be the
case in many real industrial applications, the method proposed here is viable for determining
the filtration and formation damage functions from laboratory corefloods for use in predict-
ing the injectivity decline, formation damage and contaminant propagation in a variety of
petroleum and environmental engineering projects.

We did not fully automate the method: at this stage, part of the recovery procedure
is a skillful choice of parametrizations, which requires good understanding of the physics
related to the experimental data. Full automation would require analyzing dozens of varied
cases. This is not warranted yet, as the model (2.1)—(2.3) may not be valid for all filtration
problems.

APPENDIX A. WELL-POSEDNESS OF THE REGULARIZED INVERSE FILTRATION PROBLEM

Mathematical problems that are supposed to be solved using real data containing errors
must be well-posed, i.e., O(1) perturbations cannot arise in the answer from infinitesimal
perturbations of the data. In this section we prove that the inverse problem formulated in
equation (3.1) is well-posed in the sense of Tikhonov (see [27]). To do so, a feasible subset of
parameters is chosen, such that the minimization problem has a unique minimum, and that
small perturbations of experimental data produce small parameter variations. We rewrite
the inverse problem in the framework of operator theory. Several results on regularization of
non-linear operators are used to prove the well-posedness of the inverse problem (see [14]).

The stability and convergence results obtained here are based on [7], [14], [25] and [9]. We
choose

D(G) = {\ € H*[0,1], such that > \}, (A.1)

with A, constant. Here, H2[0, 1] is the Hilbert space of functions defined in the interval [0, 1]
with norm

12 = [ (@R 417 @P + 1))
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Let us define the non-linear operator
G°: D(G°) C H?[0,1] — L*[0, A], G°(\) =c(1,-;)), (A.2)

where A represents the filtration function and ¢(1, - ; A) is the effluent concentration obtained
from the solution of the system (2.5), (2.8)-(2.9). Now L?0,1] is the Hilbert space of
functions defined in the interval [0, 1] with norm

1] = / () Pz

From the well-posedness of the direct problem ([4]), for each A there exists a unique function
c(1,-; A), so the operator in (A.2) is well-defined. Notice that the domain D(G°) is closed
and convex, therefore it is weakly closed. Let us define

M ={) € H?*[0,1] suchthat Xy <A< A3}, (A.3)

where Ay and A3 are constants.
We recall the definition of H*[0, 1] when s is not integer: Let a,, be the Fourier coefficient
of a function in [0, 1], namely

1
a, = / e 2™ f (1) da.
0
The norm in H*[0, 1] is

oo

1= X

n=—oo

1/2
(1 + ]nFS)\anP) )

We have following;:

Theorem A.l. Let \ represent the filtration function and c(1,- ;) the solution of the
system (2.1)—(2.2), with initial and boundary condition given in (2.4) and (2.5). Letn >0
and consider the domain

D,(G) = {\ € H**"[0,1] such that X\ > X} (A.4)

The following assertions are valid.

i) The (non-linear) operator
G°: D(G°) C H*™[0,1] — L*[0, 4], G°(\) = (1, ;\), (A.5)

18 continuous and injective.

ii) Let D(G°) be as in equation (A.1). Then the operator in (A.2) is weakly closed and
compact.

iii) The map G°: M — G°(M) is continuous and has continuous inverse.

Proof: (i) Let A\, — X in H*™[0,1] with n > 0. Since H*™ is compactly embedded in
C10,1] then A, — A uniformly in C*[0, 1], from Remark 2.3 it follows that G¢(\,) — G¢(\)
in L?[0, A]. The injectivity is a consequence of the uniqueness of the solution of the system
of equations (2.1)—(2.5) and (2.7).

(ii) Let {\,} be a sequence in D(G) converging weakly in H?[0,1] towards A. Since
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D(G®) is weakly closed, then A\ € D(G®) and since H?[0,1] is compactly embedded in
C'[0,1], which is the Banach space of functions with continuous derivatives and norm
| fll = maxq |f(z)| + maxjoq | f'(z)|, then A, — X in C'[0,1]. By (i) G°(\,) — G(N)
in L? [0, A]. Thus, G is compact, hence weakly closed.

(iii) Notice that G is continuous in M by (ii). Moreover, M is a compact subset of C[0, 1],
because it consists of uniformly bounded functions in H'[0,1] ([11]). Therefore (iii) is a
consequence of the Lemma of Tikhonov. [

From (ii) in Theorem A.1 and Proposition 10.1 in [14], the inverse problem of determining
the filtration function A in G°(\) = b with given b = ¢.(+) is locally an ill-posed problem.
Hence, the Regularization of Tikhonov is used to find stable solutions. The regularized
solution is determined as the minimizer over D(G*) of the functional

A= IG5 = ce()[i20.a) + 1A = N0 (A.6)

where « is the regularization parameter. Since G is weakly closed, stability and convergence
of the regularized solution follow from Theorem 10.2 and 10.3 in [14].

Let us denote by 6 a parametrization of the filtration function A(c). Neglecting the
interaction between the parameters, i.e., by assuming that they are uncorrelated, we obtain

1A= XE0. ~ 10 — 671 (A7)

where || - || denotes some appropriate norm in the parameter space. Thus, from equation
(A.7), we see that the penalization functional can be written in terms of the parameters 6.
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