333 research outputs found

    Casimir energy of a compact cylinder under the condition ϔΌ=c−2\epsilon\mu = c^{-2}

    Full text link
    The Casimir energy of an infinite compact cylinder placed in a uniform unbounded medium is investigated under the continuity condition for the light velocity when crossing the interface. As a characteristic parameter in the problem the ratio Ο2=(Ï”1−ϔ2)2/(Ï”1+Ï”2)−2=(ÎŒ1−Ό2)2/(ÎŒ1+ÎŒ2)2≀1\xi^2=(\epsilon_1-\epsilon_2)^2/ (\epsilon_1+\epsilon_2)^-2 = (\mu_1-\mu_2)^2/(\mu_1+ \mu_2)^2 \le 1 is used, where Ï”1\epsilon_1 and ÎŒ1\mu_1 are, respectively, the permittivity and permeability of the material making up the cylinder and Ï”2\epsilon_2 and ÎŒ2\mu_2 are those for the surrounding medium. It is shown that the expansion of the Casimir energy in powers of this parameter begins with the term proportional to Ο4\xi^4. The explicit formulas permitting us to find numerically the Casimir energy for any fixed value of Ο2\xi^2 are obtained. Unlike a compact ball with the same properties of the materials, the Casimir forces in the problem under consideration are attractive. The implication of the calculated Casimir energy in the flux tube model of confinement is briefly discussed.Comment: REVTeX, 12 pages, 1 figure in a separate fig1.eps file, 1 table; minor corrections in English and misprints; version to be published in Phys. Rev. D1

    Electromagnetic Casimir densities for a wedge with a coaxial cylindrical shell

    Full text link
    Vacuum expectation values of the field square and the energy-momentum tensor for the electromagnetic field are investigated for the geometry of a wedge with a coaxal cylindrical boundary. All boundaries are assumed to be perfectly conducting and both regions inside and outside the shell are considered. By using the generalized Abel-Plana formula, the vacuum expectation values are presented in the form of the sum of two terms. The first one corresponds to the geometry of the wedge without the cylindrical shell and the second term is induced by the presence of the shell. The vacuum energy density induced by the shell is negative for the interior region and is positive for the exterior region. The asymptotic behavior of the vacuum expectation values are investigated in various limiting cases. It is shown that the vacuum forces acting on the wedge sides due to the presence of the cylindrical boundary are always attractive.Comment: 21 pages, 7 figure

    Calculating Casimir Energies in Renormalizable Quantum Field Theory

    Get PDF
    Quantum vacuum energy has been known to have observable consequences since 1948 when Casimir calculated the force of attraction between parallel uncharged plates, a phenomenon confirmed experimentally with ever increasing precision. Casimir himself suggested that a similar attractive self-stress existed for a conducting spherical shell, but Boyer obtained a repulsive stress. Other geometries and higher dimensions have been considered over the years. Local effects, and divergences associated with surfaces and edges have been studied by several authors. Quite recently, Graham et al. have re-examined such calculations, using conventional techniques of perturbative quantum field theory to remove divergences, and have suggested that previous self-stress results may be suspect. Here we show that the examples considered in their work are misleading; in particular, it is well-known that in two dimensions a circular boundary has a divergence in the Casimir energy for massless fields, while for general dimension DD not equal to an even integer the corresponding Casimir energy arising from massless fields interior and exterior to a hyperspherical shell is finite. It has also long been recognized that the Casimir energy for massive fields is divergent for D≠1D\ne1. These conclusions are reinforced by a calculation of the relevant leading Feynman diagram in DD and three dimensions. There is therefore no doubt of the validity of the conventional finite Casimir calculations.Comment: 25 pages, REVTeX4, 1 ps figure. Revision includes new subsection 4B and Appendix, and other minor correction

    Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity

    Full text link
    From the beginning of the subject, calculations of quantum vacuum energies or Casimir energies have been plagued with two types of divergences: The total energy, which may be thought of as some sort of regularization of the zero-point energy, ∑12ℏω\sum\frac12\hbar\omega, seems manifestly divergent. And local energy densities, obtained from the vacuum expectation value of the energy-momentum tensor, ⟹T00⟩\langle T_{00}\rangle, typically diverge near boundaries. The energy of interaction between distinct rigid bodies of whatever type is finite, corresponding to observable forces and torques between the bodies, which can be unambiguously calculated. The self-energy of a body is less well-defined, and suffers divergences which may or may not be removable. Some examples where a unique total self-stress may be evaluated include the perfectly conducting spherical shell first considered by Boyer, a perfectly conducting cylindrical shell, and dilute dielectric balls and cylinders. In these cases the finite part is unique, yet there are divergent contributions which may be subsumed in some sort of renormalization of physical parameters. The divergences that occur in the local energy-momentum tensor near surfaces are distinct from the divergences in the total energy, which are often associated with energy located exactly on the surfaces. However, the local energy-momentum tensor couples to gravity, so what is the significance of infinite quantities here? For the classic situation of parallel plates there are indications that the divergences in the local energy density are consistent with divergences in Einstein's equations; correspondingly, it has been shown that divergences in the total Casimir energy serve to precisely renormalize the masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore