232 research outputs found

    Beyond Dopamine: GABA, Glutamate, and the Axial Symptoms of Parkinson Disease

    Get PDF
    Introduction: The axial symptoms of Parkinson disease (PD) include difficulties with balance, posture, speech, swallowing, and locomotion with freezing of gait, as well as axial rigidity. These axial symptoms impact negatively on quality of life for many patients, yet remain poorly understood. Dopaminergic treatments typically have little effect on the axial symptoms of PD, suggesting that disruptions in other neurotransmitter systems beyond the dopamine system may underlie these symptoms. The purpose of the present study was to examine the relationship between the axial symptoms of PD and GABA and glutamate levels quantified with magnetic resonance spectroscopy.Methods: The participant group included 20 patients with PD and 17 healthy control participants. Water-scaled GABA and Glx (glutamate + glutamine) concentrations were derived from GABA-edited MEGA-PRESS spectra acquired from the left basal ganglia and prefrontal cortex, and additional water-scaled Glx concentrations were acquired from standard PRESS spectra acquired from the pons. Spectra were analyzed with LCModel. The axial symptoms of PD were evaluated from subscales of the Unified Parkinson's Disease rating scale (MDS-UPDRS).Results: PD patients demonstrated significantly higher GABA levels in the basal ganglia, which correlated with the degree of gait disturbance. Basal ganglia Glx levels and prefrontal GABA and Glx levels did not differ significantly between patient and control groups, but within the PD group prefrontal Glx levels correlated negatively with difficulties turning in bed. Results from an exploratory subgroup analysis indicate that the associations between GABA, Glx, and axial symptoms scores are typically more prominent in akinetic-rigid patients than in tremor-dominant patients.Conclusion: Alterations in GABAergic and glutamatergic neurotransmission may contribute to some of the axial symptoms of PD

    Distributed Computing Grid Experiences in CMS

    Get PDF
    The CMS experiment is currently developing a computing system capable of serving, processing and archiving the large number of events that will be generated when the CMS detector starts taking data. During 2004 CMS undertook a large scale data challenge to demonstrate the ability of the CMS computing system to cope with a sustained data-taking rate equivalent to 25% of startup rate. Its goals were: to run CMS event reconstruction at CERN for a sustained period at 25 Hz input rate; to distribute the data to several regional centers; and enable data access at those centers for analysis. Grid middleware was utilized to help complete all aspects of the challenge. To continue to provide scalable access from anywhere in the world to the data, CMS is developing a layer of software that uses Grid tools to gain access to data and resources, and that aims to provide physicists with a user friendly interface for submitting their analysis jobs. This paper describes the data challenge experience with Grid infrastructure and the current development of the CMS analysis system

    An Analysis on the Impact of Export Rebate to Export Structure in China

    Get PDF
    实践经验证明,出口退税政策的实施对促进一国对外贸易,尤其是出口贸易的发展具有重要的作用。而在坚持“应退尽退”的税收中性原则下,相机的实施差别退税率的出口退税政策则在优化出口商品结构、优化产业结构等方面具有积极的作用。我国现行的出口退税政策自1985年正式实施以来,国家曾根据经济形势的变化多次对出口退税率进行调整,对不同行业的出口退税率的调整力度不尽相同,因而出口退税政策在实施的过程中对不同行业的影响也迥然不同。 本文中,笔者首先介绍了出口退税政策在国外的发展情况以及在我国的演变过程,尤其是1994年税制改革后我国对出口退税率的调整经过,并结合我国出口商品结构的变动情况进行定性分析;然后再根据...It has been proved that export rebate policy plays an important role in promoting the international trade of a country,particularly the development of the export. Under the principle of tax neutrality, adopting different export rebate rate in different conditions makes positive effect on optimization of export structure and industry structure. Since 1985, China has repeatedly adjusted the export r...学位:经济学硕士院系专业:经济学院财政系_财政学(含税收学)学号:1552007115009

    The ATLAS Data Quality Defect Database System

    Get PDF
    The ATLAS experiment at the Large Hadron Collider has implemented a new system for recording information on detector status and data quality, and for transmitting this information to users performing physics analysis. This system revolves around the concept of "defects," which are well-defined, fine-grained, unambiguous occurrences affecting the quality of recorded data. The motivation, implementation, and operation of this system is described.Comment: 6 pages, 3 figures, published in EPJ C. (v2: as published

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure

    Get PDF
    Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case–control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case–control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses

    Resisting Sleep Pressure:Impact on Resting State Functional Network Connectivity

    Get PDF
    In today's 24/7 society, sleep restriction is a common phenomenon which leads to increased levels of sleep pressure in daily life. However, the magnitude and extent of impairment of brain functioning due to increased sleep pressure is still not completely understood. Resting state network (RSN) analyses have become increasingly popular because they allow us to investigate brain activity patterns in the absence of a specific task and to identify changes under different levels of vigilance (e.g. due to increased sleep pressure). RSNs are commonly derived from BOLD fMRI signals but studies progressively also employ cerebral blood flow (CBF) signals. To investigate the impact of sleep pressure on RSNs, we examined RSNs of participants under high (19 h awake) and normal (10 h awake) sleep pressure with three imaging modalities (arterial spin labeling, BOLD, pseudo BOLD) while providing confirmation of vigilance states in most conditions. We demonstrated that CBF and pseudo BOLD signals (measured with arterial spin labeling) are suited to derive independent component analysis based RSNs. The spatial map differences of these RSNs were rather small, suggesting a strong biological substrate underlying these networks. Interestingly, increased sleep pressure, namely longer time awake, specifically changed the functional network connectivity (FNC) between RSNs. In summary, all FNCs of the default mode network with any other network or component showed increasing effects as a function of increased 'time awake'. All other FNCs became more anti-correlated with increased 'time awake'. The sensorimotor networks were the only ones who showed a within network change of FNC, namely decreased connectivity as function of 'time awake'. These specific changes of FNC could reflect both compensatory mechanisms aiming to fight sleep as well as a first reduction of consciousness while becoming drowsy. We think that the specific changes observed in functional network connectivity could imply an impairment of information transfer between the affected RSNs

    Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder:The ENIGMA adventure

    Get PDF
    International audienc
    corecore