205 research outputs found

    Herschel-ATLAS: The angular correlation function of submillimetre galaxies at high and low redshift

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern ObservatoryWe present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 μm-selected sample we detect no significant clustering, consistent with the expectation that the 250 μm-selected sources are mostly normal galaxies at z 1. For our 350 μm and 500 μm-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z~2–3 we detect significant strong clustering, leading to an estimate of r0 ~ 7–11 h-1 Mpc. The slope of our clustering measurements is very steep, δ ~ 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.Peer reviewe

    A search for debris disks in the Herschel-ATLAS

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO)Aims. We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods. We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results. We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme.Peer reviewe

    First high-resolution detection of a warm absorber in the Broad Line Radio Galaxy 3C 382

    Full text link
    Recent high-resolution measurements suggest that the soft X-ray spectrum of obscured Radio Galaxies (RG) exhibits signatures of photoionised gas (e.g. 3C 445 and 3C 33) similar to those observed in radio-quiet obscured Active Galactic Nuclei (AGN). While signatures of warm absorbing gas covering a wide range of temperature and ionisation states have been detected in about one half of the population of nearby Seyfert 1 galaxies, no traces of warm absorber gas have been reported to date in the high-resolution spectra of Broad Line Radio Galaxies (BLRG). We present here the first detection of a soft X-ray warm absorber in the powerful FRII BLRG 3C 382 using the Reflection Grating Spectrometer (RGS) on-board XMM-Newton. The absorption gas appears to be highly ionised, with column density of the order of 10^{22} cm^{-2}, ionisation parameter log\xi>2 erg cm s^{-1} and outflow velocities of the order of 10^{3} km s^{-1}. The absorption lines may come from regions located outside the torus, however at distances less than 60 pc. This result may indicate that a plasma ejected at velocities near the speed of light and a photoionised gas with slower, outflow velocities can coexist in the same source beyond the Broad Line Regions.Comment: 5 pages, 3 figures, 1 table, accepted for publication in MNRAS Letter

    A Spontaneous Mutation in Contactin 1 in the Mouse

    Get PDF
    Mutations in the gene encoding the immunoglobulin-superfamily member cell adhesion molecule contactin1 (CNTN1) cause lethal congenital myopathy in human patients and neurodevelopmental phenotypes in knockout mice. Whether the mutant mice provide an accurate model of the human disease is unclear; resolving this will require additional functional tests of the neuromuscular system and examination of Cntn1 mutations on different genetic backgrounds that may influence the phenotype. Toward these ends, we have analyzed a new, spontaneous mutation in the mouse Cntn1 gene that arose in a BALB/c genetic background. The overt phenotype is very similar to the knockout of Cntn1, with affected animals having reduced body weight, a failure to thrive, locomotor abnormalities, and a lifespan of 2–3 weeks. Mice homozygous for the new allele have CNTN1 protein undetectable by western blotting, suggesting that it is a null or very severe hypomorph. In an analysis of neuromuscular function, neuromuscular junctions had normal morphology, consistent with previous studies in knockout mice, and the muscles were able to generate appropriate force when normalized for their reduced size in late stage animals. Therefore, the Cntn1 mutant mice do not show evidence for a myopathy, but instead the phenotype is likely to be caused by dysfunction in the nervous system. Given the similarity of CNTN1 to other Ig-superfamily proteins such as DSCAMs, we also characterized the expression and localization of Cntn1 in the retinas of mutant mice for developmental defects. Despite widespread expression, no anomalies in retinal anatomy were detected histologically or using a battery of cell-type specific antibodies. We therefore conclude that the phenotype of the Cntn1 mice arises from dysfunction in the brain, spinal cord or peripheral nervous system, and is similar in either a BALB/c or B6;129;Black Swiss background, raising a possible discordance between the mouse and human phenotypes resulting from Cntn1 mutations

    The High Energy view of the Broad Line Radio Galaxy 3C 111

    Get PDF
    We present the analysis of Suzaku and XMM-Newton observations of the broad-line radio galaxy (BLRG) 3C 111. Its high energy emission shows variability, a harder continuum with respect to the radio quiet AGN population, and weak reflection features. Suzaku found the source in a minimum flux level; a comparison with the XMM-Newton data implies an increase of a factor of 2.5 in the 0.5-10 keV flux, in the 6 months separating the two observations. The iron K complex is detected in both datasets, with rather low equivalent width(s). The intensity of the iron K complex does not respond to the change in continuum flux. An ultra-fast, high-ionization outflowing gas is clearly detected in the XIS data; the absorber is most likely unstable. Indeed, during the XMM-Newton observation, which was 6 months after, the absorber was not detected. No clear roll-over in the hard X-ray emission is detected, probably due to the emergence of the jet as a dominant component in the hard X-ray band, as suggested by the detection above ~ 100 keV with the GSO on-board Suzaku, although the present data do not allow us to firmly constrain the relative contribution of the different components. The fluxes observed by the gamma-ray satellites CGRO and Fermi would be compatible with the putative jet component if peaking at energies E ~ 100 MeV. In the X-ray band, the jet contribution to the continuum starts to be significant only above 10 keV. If the detection of the jet component in 3C 111 is confirmed, then its relative importance in the X-ray energy band could explain the different observed properties in the high-energy emission of BLRGs, which are otherwise similar in their other multiwavelength properties. Comparison between X-ray and gamma-ray data taken at different epochs suggests that the strong variability observed for 3C 111 is probably driven by a change in the primary continuum.Comment: Accepted for publication in MNRAS; 15 pages, 9 figures, 5 table

    Mining the Herschel-astrophysical terahertz large area survey : Submillimetre-selected blazars in equatorial fields

    Get PDF
    The Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) provides an unprecedented opportunity to search for blazars at sub-mm wavelengths. We cross-matched the Faint Images of the Radio Sky at Twenty-cm (FIRST) radio source catalogue with the 11 655 sources brighter than 35 mJy at 500 μm in the ∼135 deg2 of the sky covered by the H-ATLAS equatorial fields at 9h and 15h, plus half of the field at 12h. We found that 379 of the H-ATLAS sources have a FIRST counterpart within 10 arcsec, including eight catalogued blazars (plus one known blazar that was found at the edge of one of the H-ATLAS maps). To search for additional blazar candidates we have devised new diagnostic diagrams and found that known blazars occupy a region of the log(S500μm/S350μm) versus log(S500μm/S1.4 GHz) plane separated from that of sub-mm sources with radio emission powered by star formation, but shared with radio galaxies and steep-spectrum radio quasars. Using this diagnostic we have selected 12 further possible candidates that turn out to be scattered in the (r-z) versus (u-r) plane or in the Wide-Field Infrared Survey Explorer colour-colour diagram, where known blazars are concentrated in well defined strips. This suggests that the majority of them are not blazars. Based on an inspection of all the available photometric data, including unpublished VISTA Kilo-degree Infrared Galaxy survey photometry and new radio observations, we found that the spectral energy distributions (SEDs) of only one out of the 12 newly selected sources are compatible with being synchrotron dominated at least up to 500 μm, i.e. with being a blazar. Another object may consist of a faint blazar nucleus inside a bright star-forming galaxy. The possibility that some blazar hosts are endowed with active star formation is supported by our analysis of the SEDs of Planck Early Release Compact Source Catalogue blazars detected at both 545 and 857 GHz. The estimated rest-frame synchrotron peak frequencies of H-ATLAS blazars are in the range 11.5 ≤ log (νpeak, Hz) ≤ 13.7, implying that these objects are low synchrotron peak. Six of them also show evidence of an ultraviolet excess that can be attributed to emission from the accretion disc. Allowing for the possibility of misidentifications and of contamination of the 500 μm flux density by the dusty torus or by the host galaxy, we estimate that there are seven or eight pure synchrotron sources brighter than S500μm = 35 mJy over the studied area, a result that sets important constraints on blazar evolutionary models.Peer reviewe

    WEBT multiwavelength monitoring and XMM-Newton observations of BL Lacertae in 2007-2008. Unveiling different emission components

    Get PDF
    In 2007-2008 we carried out a new multiwavelength campaign of the Whole Earth Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the XMM-Newton satellite, to study its emission properties. The source was monitored in the optical-to-radio bands by 37 telescopes. The brightness level was relatively low. Some episodes of very fast variability were detected in the optical bands. The X-ray spectra are well fitted by a power law with photon index of about 2 and photoelectric absorption exceeding the Galactic value. However, when taking into account the presence of a molecular cloud on the line of sight, the data are best fitted by a double power law, implying a concave X-ray spectrum. The spectral energy distributions (SEDs) built with simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations suggest that the peak of the synchrotron emission lies in the near-IR band, and show a prominent UV excess, besides a slight soft-X-ray excess. A comparison with the SEDs corresponding to previous observations with X-ray satellites shows that the X-ray spectrum is extremely variable. We ascribe the UV excess to thermal emission from the accretion disc, and the other broad-band spectral features to the presence of two synchrotron components, with their related SSC emission. We fit the thermal emission with a black body law and the non-thermal components by means of a helical jet model. The fit indicates a disc temperature greater than 20000 K and a luminosity greater than 6 x 10^44 erg/s.Comment: 11 pages, 7 figures, accepted for publication in A&

    Gas and dust in a submillimeter galaxy at z = 4.24 from the Herschel ATLAS

    Full text link
    We report ground-based follow-up observations of the exceptional source, ID141, one the brightest sources detected so far in the H-ATLAS cosmological survey. ID141 was observed using the IRAM 30-meter telescope and Plateau de Bure interferometer (PdBI), the Submillimeter Array (SMA) and the Atacama Pathfinder Experiment (APEX) submillimeter telescope to measure the dust continuum and emission lines of the main isotope of carbon monoxide and carbon ([C I] and [C II]). The detection of strong CO emission lines with the PdBI confirms that ID141 is at high redshift (z=4.243 +/- 0.001). The strength of the continuum and emission lines suggests that ID141 is gravitationally lensed. The width (Delta V (FWHM) ~ 800 km/s}) and asymmetric profiles of the CO and carbon lines indicate orbital motion in a disc or a merger. The properties derived for ID141 are compatible with a ultraluminous (L_FIR ~ 8.5 +/- 0.3 x 10^13/mu_L Lsun, where mu_L is the amplification factor, dense (n ~ 10^4 cm^-3) and warm (T_kin ~ 40K) starburst galaxy, with an estimated star-formation rate of (0.7 to 1.7) x 10^4/mu_L Msun/yr. The carbon emission lines indicate a dense (n ~ 10^4 cm^-3) Photo-Dominated Region, illuminated by a far-UV radiation field a few thousand times more intense than that in our Galaxy. In conclusion, the physical properties of the high-z galaxy, ID141, are remarkably similar to those of local ultraluminous infrared galaxies.Comment: To appear in Ap

    The AMIGA sample of isolated galaxies. XI. Optical characterisation of nuclear activity

    Full text link
    Context.- This paper is part of a series involving the AMIGA project (Analysis of the Interstellar Medium of Isolated GAlaxies), which identifies and studies a statistically-significant sample of the most isolated galaxies in the northern sky. Aims.- We present a catalogue of nuclear activity, traced by optical emission lines, in a well-defined sample of the most isolated galaxies in the local Universe, which will be used as a basis for studying the effect of the environment on nuclear activity. Methods.- We obtained spectral data from the 6th Data Release of the Sloan Digital Sky Survey, which were inspected in a semi-automatic way. We subtracted the underlying stellar populations from the spectra (using the software Starlight) and modelled the nuclear emission features. Standard emission-line diagnostics diagrams were applied, using a new classification scheme that takes into account censored data, to classify the type of nuclear emission. Results.- We provide a final catalogue of spectroscopic data, stellar populations, emission lines and classification of optical nuclear activity for AMIGA galaxies. The prevalence of optical active galactic nuclei (AGN) in AMIGA galaxies is 20.4%, or 36.7% including transition objects. The fraction of AGN increases steeply towards earlier morphological types and higher luminosities. We compare these results with a matched analysis of galaxies in isolated denser environments (Hickson Compact Groups). After correcting for the effects of the morphology and luminosity, we find that there is no evidence for a difference in the prevalence of AGN between isolated and compact group galaxies, and we discuss the implications of this result. Conclusions.- We find that a major interaction is not a necessary condition for the triggering of optical AGN.Comment: 16 pages, 11 figures, 12 tables, published in Astronomy and Astrophysics. Figure 5 corrected: [OI] diagram adde

    Herschel-ATLAS: VISTA VIKING near-IR counterparts in the Phase 1 GAMA 9h data

    Get PDF
    We identify near-infrared Ks band counterparts to Herschel-ATLAS sub-mm sources, using a preliminary object catalogue from the VISTA VIKING survey. The sub-mm sources are selected from the H-ATLAS Phase 1 catalogue of the GAMA 9h field, which includes all objects detected at 250, 350 or 500 um with the SPIRE instrument. We apply and discuss a likelihood ratio (LR) method for VIKING candidates within a search radius of 10" of the 22,000 SPIRE sources with a 5 sigma detection at 250 um. We find that 11,294(51%) of the SPIRE sources have a best VIKING counterpart with a reliability R0.8R\ge 0.8, and the false identification rate of these is estimated to be 4.2%. We expect to miss ~5% of true VIKING counterparts. There is evidence from Z-J and J-Ks colours that the reliable counterparts to SPIRE galaxies are marginally redder than the field population. We obtain photometric redshifts for ~68% of all (non-stellar) VIKING candidates with a median redshift of 0.405. Comparing to the results of the optical identifications supplied with the Phase I catalogue, we find that the use of medium-deep near-infrared data improves the identification rate of reliable counterparts from 36% to 51%.Comment: 20 pages, 20 figures, 3 tables, accepted by MNRA
    corecore