1,279 research outputs found

    Helical Magnetic Fields Associated with the Relativistic Jets of Four BL Lac Objects

    Get PDF
    Evidence has been mounting that many of the transverse jet B fields observed in BL Lac objects on parsec scales represent the dominant vvroidal compoent of the intrinsic jet B fields. Such fields could come about, for example, as a result of the "winding up" of an initial "seed" field with a significant longitudinal component by the rotation of the central accreting object. If this is the case, this should give rise to gradients in the rotation measure (RM) across the jets, due to the systematic change in the line-of-sight component of the jet B field. We present evidence for transverse RM gradients in four BL Lac objects, strengthening arguments that the jets of these objects do indeed have toroidal or helical B fields. This underlines the view of the jets as fundamentally electromagnetic structures, and suggests that they may well carry non-zero currents. It also provides a natural means to collimate the jets.Comment: 6 pages, 2 figures, accepted for publication in MNRAS Letter

    Surprising Evolution of the Parsec-scale Faraday Rotation Gradients in the Jet of the BL Lac Object B1803+784

    Get PDF
    Several multi-frequency polarization studies have shown the presence of systematic Faraday Rotation gradients across the parsec-scale jets of Active Galactic Nuclei (AGN), taken to be due to the systematic variation of the line-of-sight component of a helical magnetic (B) field across the jet. Other studies have confirmed the presence and sense of these gradients in several sources, thus providing evidence that these gradients persist over time and over large distances from the core. However, we find surprising new evidence for a reversal in the direction of the Faraday Rotation gradient across the jet of B1803+784, for which multi-frequency polarization observations are available at four epochs. At our three epochs and the epoch of Zavala & Taylor (2003), we observe transverse Rotation Measure (RM) gradients across the jet, consistent with the presence of a helical magnetic field wrapped around the jet. However, we also observe a "flip" in the direction of the gradient between June 2000 and August 2002. Although the origins of this phenomena are not entirely clear, possibly explanations include (i) the sense of rotation of the central supermassive black hole and accretion disc has remained the same, but the dominant magnetic pole facing the Earth has changed from North to South; (ii) a change in the direction of the azimuthal B field component as a result of torsional oscillations of the jet; and (iii) a change in the relative contributions to the observed rotation measures of the "inner" and "outer" helical fields in a magnetic-tower model. Although we cannot entirely rule out the possibility that the observed changes in the RM distribution are associated instead with changes in the thermal-electron distribution in the vicinity of the jet, we argue that this explanation is unlikely.Comment: 21 pages, 10 figures. Accepted for publication in MNRA

    Three dimensional magnetic field structure of six parsec-scale active galactic nuclei jets

    Get PDF
    The parsec-scale Faraday rotation measure (RM) distribution of six "blazars" is investigated using multi-frequency (4.6--43 GHz) polarization observations taken on 2006 July 2 with the VLBA. Analysis of the RM provides the direction of the line-of-sight (LoS) magnetic field component, as well as the intrinsic 2-D polarization distribution on the plane of the sky. Our results show that the magnitude of the core RM increases systematically with frequency, and is well described by a power-law, where |RM_{core}| \propto \nu^a. Our measured values of aa vary from 0.9 to 3.8, providing information on the assumed power-law fall-off in the electron density with distance from the central engine for each source. RM gradients were detected across the jets of three sources, supporting the presence of helical magnetic fields in a sheath or boundary layer surrounding their jets. We find a bi-modal distribution of the intrinsic jet polarization orientation; either aligned or orthogonal to the jet direction. A helical magnetic field geometry can neatly explain both the bi-model distribution of the jet polarization orientation and the ordered polarization structure detected on these scales. In half the sources, we find that the core RM changes sign with distance from the central engine. We provide an explanation for this by considering a boundary layer of Faraday rotating material threaded by a helical magnetic field, where bends in the relativistic jet or accelerating/decelerating flows give rise to changes in the dominant LoS components of the magnetic field, which in turn gives rise to different signs of the RM. (abridged)Comment: 29 pages, 26 figures, accepted for publication in MNRAS, v2 -> proof corrections: references update

    Changes in the trajectory of the radio jet in 0735+178?

    Get PDF
    We present multi-epoch 8.4 and 43 GHz Very Long Baseline Array images of the BL Lac object 0735+178. The images confirm the presence of a twisted jet with two sharp apparent bends of 90^{\circ} within two milliarcseconds of the core, resembling a helix in projection. The observed twisted geometry could be the result of precession of the jet inlet, but is more likely produced by pressure gradients in the external medium through which the jet propagates. Quasi-stationary components are observed at the locations of the 90^{\circ} bends, possibly produced by differential Doppler boosting. Identification of components across epochs, since the earliest VLBI observations of this source in 1979.2, proves difficult due to the sometimes large time gaps between observations. One possible identification suggests the existence of superluminal components following non--ballistic trajectories with velocities up to 11.6±0.6h651c11.6\pm 0.6 h_{65}^{-1} c. However, in images obtained after mid-1995, components show a remarkable tendency to cluster near several jet positions, suggesting a different scenario in which components have remained nearly stationary in time at least since mid-1995. Comparison with the earlier published data, covering more than 19 years of observations, suggests a striking qualitative change in the jet trajectory sometime between mid-1992 and mid-1995, with the twisted jet structure with stationary components becoming apparent only at the later epochs. This would require a re-evaluation of the physical parameters estimated for 0735+178, such as the observing viewing angle, the plasma bulk Lorentz factor, and those deduced from these.Comment: 18 pages, 5 figures, accepted for publication in MNRA
    corecore