542 research outputs found

    Towards an understanding of the contribution of global learning to the wellbeing and mental health of young people with special educational needs

    Get PDF
    The aim of this study was to explore the possible impact of global learning interventions on students’ mental health and wellbeing. The study employed a mixed methods design, which consisted of student (N11) and teacher (N4) interviews, as well as a mental health and wellbeing questionnaire. The participants of this study all attended an autistic specific secondary school that served as a Global Learning Programme Expert Centre. The findings of the study indicated that students who participated in lessons that had a global learning focus, experienced a small but significant improvement in mental health and wellbeing. This small-scale study may lead to more extensive research in the area

    Expression study of molecular markers involved in staminality and differentiation in the colonial ascidians Botryllus schlosseri

    Get PDF
    Ascidians are invertebrate chordates, members of the subphylum Tunicata that represents the sister group of vertebrates. They offer the opportunity to investigate and compare the behaviour of both embryonic and adult stem cells. Morphological data suggest the presence of undifferentiated haemocytes (haemoblasts) able to proliferate and give rise to terminally differentiated cells. Relevant studies were also carried out in the neural lineage, in which neural progenitor cells regenerate the brain after extirpation. In B. schlosseri, during the cyclical generation change, bud primordial cells, probably deriving from a pool of long-living stem cells, are able to give rise to the neural complex. We screened the B. schlosseri genome and transcriptome, looking for transcripts/genes showing similarity to vertebrate molecular markers of haematopoietic and neural stem cells. Four sequences, orthologous to mammalian transcripts considered markers of haematopoietic progenitor cells, were identified in B. schlosseri. They are: bsabcg2, bscd133, bsgata1/2/3 and bsgata4/5/6. In situ hybridization on haemocyte monolayers and colony sections, resulted in labelling of cells in the sub-endostylar haemolymph lacunae. This results matches previously morphological data that identified the endostyle as a stem cell niche. Quantitative real time PCR (qRT-PCR) highlighted the over-expression of the considered genes in the mid-cycle phase of the blastogenetic cycle. During this phase, there is the formation of new secondary buds emerging from the primary buds. The high expression levels of bsabcg2, bscd133, bsgata1/2/3 and bsgata4/5/6 genes in the mid-cycle phase reflect the presence of undifferentiated cells involved in proliferative and differentiation events required for giving rise to the new blastogenetic generation. For the neural lineage, we identified and characterised two transcripts orthologues of vertebrate neural stem cell markers (BsSox2 and BsMsi2). We also studied the expression, during the blastogenetic cycle, of a panel of genes already known to be involved in ascidian larvae neurogenesis, i.e., orthologues of Pax2/5/8, Hox1 and Hox3. ISH with riboprobes for BsSox2, BsMsi2, BsPax2/5/8, BsHox1 and BsHox3 revealed a common labelling in the endostyle niche. The presence of bssox2, bsmsi2, bspax2/5/8, bshox1 and bshox3 transcripts in the cells of the region known to be a stem cell niche, led us to conclude, not only that our probes identified undifferentiated cells but even that in B. schlosseri are probably present a single population of pluripotent stem cells that could differentiate into haematopoietic or neural cells. The qRT-PCR, showed an high expression level in the mid-cycle phase of all the putative neural markers considered. In this phase new secondary buds are produced from primary buds. Each new bud needs its own neural complex and this requires the proliferation of undifferentiated cells to originate neural gland rudiment and cerebral ganglion. Bssox2, bsmsi2, bspax2/5/8, bshox1 and bshox3 increased their expression associated with these neurogenesis events and this support their involvement in neural stem cell differentiation

    Immune activation, immune senescence and levels of Epstein Barr Virus in kidney transplant patients: Impact of mTOR inhibitors

    Get PDF
    Post-transplant lymphoproliferative disorders (PTLD) represent a severe complication in transplanted patients and Epstein-Barr Virus (EBV) is the main driver. Besides immunodepression, immune activation/chronic inflammation play an important role in both virus reactivation and expansion of EBV-positive B cells. The aim of this study was to assess the impact of immunosuppressive strategies on factors involved in the PTLD's pathogenesis. 124 kidney transplanted patients were enrolled in this study: 71 were treated with mycophenolic acid (MPA) and 53 treated with mTOR inhibitor (mTORi), both in combination with different doses of calcineurin inhibitor. At the time of the transplant (T0), profile of inflammation/immune activation and immune senescence didn't differ between the two groups, but after one year of treatment (T1) markers were significantly higher in MPA-treated patients; their immunosenescence process was supported by the greater erosion of telomeres despite their younger age. Percentages of activated B cells and levels of EBV-DNA significantly increased in MPA-treated patients, and at T1 were significantly higher in MPA- than in mTORi-treated patients. Overall, these findings indicate that mTOR inhibitors constrain the inflammation/immune activation and senescence status, thus reducing the expansion of EBV-infected B cells and the risk of virus-associated PTLD in kidney transplant recipients. \ua9 2019 The Author

    Functional error modeling for uncertainty quantification in hydrogeology

    Get PDF
    Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization

    Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for new physics is presented based on an event signature of at least three jets accompanied by large missing transverse momentum, using a data sample corresponding to an integrated luminosity of 36 inverse picobarns collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector at the LHC. No excess of events is observed above the expected standard model backgrounds, which are all estimated from the data. Exclusion limits are presented for the constrained minimal supersymmetric extension of the standard model. Cross section limits are also presented using simplified models with new particles decaying to an undetected particle and one or two jets

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Rapid detection of peptide markers for authentication purposes in raw and cooked meat using ambient liquid extraction surface analysis mass spectrometry

    Get PDF
    In this paper, our previously developed ambient LESA-MS methodology is implemented to analyze five types of thermally treated meat species, namely beef, pork, horse, chicken, and turkey meat, in order to select and identify heat-stable and species-specific peptide markers. In-solution tryptic digests of cooked meats were deposited onto a polymer surface, followed by LESA-MS analysis and evaluation using multivariate data analysis and tandem electrospray MS. The five types of cooked meat were clearly discriminated using principal component analysis and orthogonal partial least squares discriminant analysis. A number of 23 heat stable peptide markers unique to species and muscle protein were identified following data-dependent tandem LESA-MS analysis. Surface extraction and direct ambient MS analysis of mixtures of cooked meat species was performed for the first time and enabled detection of 10% (w/w) of pork, horse, and turkey meat, and 5% (w/w) of chicken meat in beef, using the developed LESA-MS/MS analysis. The study shows, for the first time, that ambient LESA-MS methodology displays specificity sufficient to be implemented effectively for the analysis of processed and complex peptide digests. The proposed approach is much faster and simpler than other measurement tools for meat speciation; it has potential for application in other areas of meat science or food production

    Prospective Association of Daily Steps with Cardiovascular Disease: A Harmonized Meta-Analysis

    Get PDF
    Background: Taking fewer than the widely promoted “10 000 steps per day” has recently been associated with lower risk of all-cause mortality. The relationship of steps and cardiovascular disease (CVD) risk remains poorly described. A meta-analysis examining the dose–response relationship between steps per day and CVD can help inform clinical and public health guidelines. Methods: Eight prospective studies (20 152 adults [ie, ≥18 years of age]) were included with device-measured steps and participants followed for CVD events. Studies quantified steps per day and CVD events were defined as fatal and nonfatal coronary heart disease, stroke, and heart failure. Cox proportional hazards regression analyses were completed using study-specific quartiles and hazard ratios (HR) and 95% CI were meta-analyzed with inverse-variance–weighted random effects models. Results: The mean age of participants was 63.2±12.4 years and 52% were women. The mean follow-up was 6.2 years (123 209 person-years), with a total of 1523 CVD events (12.4 per 1000 participant-years) reported. There was a significant difference in the association of steps per day and CVD between older (ie, ≥60 years of age) and younger adults (ie, <60 years of age). For older adults, the HR for quartile 2 was 0.80 (95% CI, 0.69 to 0.93), 0.62 for quartile 3 (95% CI, 0.52 to 0.74), and 0.51 for quartile 4 (95% CI, 0.41 to 0.63) compared with the lowest quartile. For younger adults, the HR for quartile 2 was 0.79 (95% CI, 0.46 to 1.35), 0.90 for quartile 3 (95% CI, 0.64 to 1.25), and 0.95 for quartile 4 (95% CI, 0.61 to 1.48) compared with the lowest quartile. Restricted cubic splines demonstrated a nonlinear association whereby more steps were associated with decreased risk of CVD among older adults. Conclusions: For older adults, taking more daily steps was associated with a progressively decreased risk of CVD. Monitoring and promoting steps per day is a simple metric for clinician–patient communication and population health to reduce the risk of CVD
    corecore