38 research outputs found

    Living Cell Microarrays: An Overview of Concepts

    Get PDF
    Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays.Niedersächsische Krebsgesellschaft e.V.BIOFABRICATION FOR NIFE InitiativeLower Saxony ministry of Science and CultureVolkswagen Stiftun

    Development of Aptamer-Based TID Assays Using Thermophoresis and Microarrays

    Get PDF
    Aptamers are single-stranded oligonucleotides which can be used as alternative recognition elements for protein detection, because aptamers bind their targets with a high affinity similar to antibodies. Due to the target-induced conformational changes of aptamers, these oligonucleotides can be applied in various biosensing platforms. In this work, aptamers directed against the vascular endothelial growth factor (VEGF) were used as a model system. VEGF plays a key role in physiological angiogenesis and vasculogenesis. Furthermore, VEGF is involved in the development and growth of cancer and other diseases like age-related macular degeneration, rheumatoid arthritis, diabetes mellitus, and neurodegenerative disorders. Detecting the protein biomarker VEGF is therefore of great importance for medical research and diagnostics. In this research, VEGF-binding aptamers were investigated for the systematic development of a target-induced dissociation (TID) assay utilizing thermophoresis and microarrays. The established aptamer-microarray allowed for the detection of 0.1 nM of VEGF. Furthermore, the systematic development of the TID method using the VEGF model protein could help to develop further TID assays for the detection of various protein biomarkers

    Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity

    Get PDF
    BACKGROUND: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders"

    Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia

    Get PDF
    Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue. Copyright

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Development of Aptamer-Based TID Assays Using Thermophoresis and Microarrays

    No full text
    Aptamers are single-stranded oligonucleotides which can be used as alternative recognition elements for protein detection, because aptamers bind their targets with a high affinity similar to antibodies. Due to the target-induced conformational changes of aptamers, these oligonucleotides can be applied in various biosensing platforms. In this work, aptamers directed against the vascular endothelial growth factor (VEGF) were used as a model system. VEGF plays a key role in physiological angiogenesis and vasculogenesis. Furthermore, VEGF is involved in the development and growth of cancer and other diseases like age-related macular degeneration, rheumatoid arthritis, diabetes mellitus, and neurodegenerative disorders. Detecting the protein biomarker VEGF is therefore of great importance for medical research and diagnostics. In this research, VEGF-binding aptamers were investigated for the systematic development of a target-induced dissociation (TID) assay utilizing thermophoresis and microarrays. The established aptamer-microarray allowed for the detection of 0.1 nM of VEGF. Furthermore, the systematic development of the TID method using the VEGF model protein could help to develop further TID assays for the detection of various protein biomarkers

    Inhibition of Mitochondrial Calcium Uniporter Enhances Postmortem Proteolysis and Tenderness in Beef Cattle

    No full text
    The purpose of this study was to examine the role of mitochondria in postmortem calcium homeostasis and its effect on proteolysis and tenderness. We hypothesized that mitochondria buffer cytosolic calcium levels and delay the activation of calpain-1 and subsequently the development of meat tenderness. To test this hypothesis, pre-rigor bovine longissimus thoracis et lumborum muscle samples were injected with DS16570511 to inhibit mitochondrial calcium uptake. Free calcium, tenderness, texture profile analysis (TPA), calpain-1 activity, and proteolysis were evaluated over a 336 h aging period. Inhibition of mitochondrial calcium uptake increased (P \u3c .0001) cytosolic calcium concentration and calpain-1 autolysis and activity at 24 h compared to control steaks. Further, tenderness and TPA at 168 and 336 h, calpastatin degradation at 24 h, and proteolysis at 168 h were all enhanced (P \u3c .05) in the treated steaks. Collectively, these data indicate that inhibition of mitochondrial calcium uptake can enhance postmortem proteolysis and tenderization through an early activation of calpain-1
    corecore