1,867 research outputs found

    Star cluster formation and star formation: the role of environment and star-formation efficiencies

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0088-5By analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to determine whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star-formation rate, burst strength, star-formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few billion years later.Peer reviewe

    Thermodynamics of Na_8 and Na_{20} clusters studied with ab-initio electronic structure methods

    Get PDF
    We study the thermodynamics of Na_8 and Na_{20} clusters using multiple-histogram methods and an ab initio treatment of the valence electrons within density functional theory. We consider the influence of various electron kinetic-energy functionals and pseudopotentials on the canonical ionic specific heats. The results for all models we consider show qualitative similarities, but also significant temperature shifts from model to model of peaks and other features in the specific-heat curves. The use of phenomenological pseudopotentials shifts the melting peak substantially (~ 50--100 K) when compared to ab-initio results. It is argued that the choice of a good pseudopotential and use of better electronic kinetic-energy functionals has the potential for performing large time scale and large sized thermodynamical simulations on clusters.Comment: LaTeX file and EPS figures. 24 pages, 13 figures. Submitted to Phys. Rev.

    The Role of Bound States in Time-Dependent Quantum Transport

    Full text link
    Charge transport through a nanoscale junction coupled to two macroscopic electrodes is investigated for the situation when bound states are present. We provide numerical evidence that bound states give rise to persistent, non-decaying current oscillations in the junction. We also show that the amplitude of these oscillations can exhibit a strong dependence on the history of the applied potential as well as on the initial equilibrium configuration. Our simulations allow for a quantitative investigation of several transient features. We also discuss the existence of different time-scales and address their microscopic origin.Comment: 10 pages, 8 figure

    Slabs of stabilized jellium: Quantum-size and self-compression effects

    Get PDF
    We examine thin films of two simple metals (aluminum and lithium) in the stabilized jellium model, a modification of the regular jellium model in which a constant potential is added inside the metal to stabilize the system for a given background density. We investigate quantum-size effects on the surface energy and the work function. For a given film thickness we also evaluate the density yielding energy stability, which is found to be slightly higher than the equilibrium density of the bulk system and to approach this value in the limit of thick slabs. A comparison of our self-consistent calculations with the predictions of the liquid-drop model shows the validity of this model.Comment: 7 pages, 6 figures, to appear in Phys. Rev.

    Morning and Evening-Type Differences in Slow Waves during NREM Sleep Reveal Both Trait and State-Dependent Phenotypes

    Get PDF
    Brain recovery after prolonged wakefulness is characterized by increased density, amplitude and slope of slow waves (SW, <4 Hz) during non-rapid eye movement (NREM) sleep. These SW comprise a negative phase, during which cortical neurons are mostly silent, and a positive phase, in which most neurons fire intensively. Previous work showed, using EEG spectral analysis as an index of cortical synchrony, that Morning-types (M-types) present faster dynamics of sleep pressure than Evening-types (E-types). We thus hypothesized that single SW properties will also show larger changes in M-types than in E-types in response to increased sleep pressure. SW density (number per minute) and characteristics (amplitude, slope between negative and positive peaks, frequency and duration of negative and positive phases) were compared between chronotypes for a baseline sleep episode (BL) and for recovery sleep (REC) after two nights of sleep fragmentation. While SW density did not differ between chronotypes, M-types showed higher SW amplitude and steeper slope than E-types, especially during REC. SW properties were also averaged for 3 NREM sleep periods selected for their decreasing level of sleep pressure (first cycle of REC [REC1], first cycle of BL [BL1] and fourth cycle of BL [BL4]). Slope was significantly steeper in M-types than in E-types in REC1 and BL1. SW frequency was consistently higher and duration of positive and negative phases constantly shorter in M-types than in E-types. Our data reveal that specific properties of cortical synchrony during sleep differ between M-types and E-types, although chronotypes show a similar capacity to generate SW. These differences may involve 1) stable trait characteristics independent of sleep pressure (i.e., frequency and durations) likely linked to the length of silent and burst-firing phases of individual neurons, and 2) specific responses to increased sleep pressure (i.e., slope and amplitude) expected to depend on the synchrony between neurons

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Density functional theories and self-energy approaches

    Get PDF
    A purpose-designed microarray platform (Stressgenes, Phase 1) was utilised to investigate the changes in gene expression within the liver of rainbow trout during exposure to a prolonged period of confinement. Tissue and blood samples were collected from trout at intervals up to 648 h after transfer to a standardised confinement stressor, together with matched samples from undisturbed control fish. Plasma ACTH, cortisol, glucose and lactate were analysed to confirm that the neuroendocrine response to confinement was consistent with previous findings and to provide a phenotypic context to assist interpretation of gene expression data. Liver samples for suppression subtractive hybridisation (SSH) library construction were selected from within the experimental groups comprising “early” stress (2–48 h) and “late” stress (96–504 h). In order to reduce redundancy within the four SSH libraries and yield a higher number of unique clones an additional subtraction was carried out. After printing of the arrays a series of 55 hybridisations were executed to cover 6 time points. At 2 h, 6 h, 24 h, 168 h and 504 h 5 individual confined fish and 5 individual control fish were used with control fish only at 0 h. A preliminary list of 314 clones considered differentially regulated over the complete time course was generated by a combination of data analysis approaches and the most significant gene expression changes were found to occur during the 24 h to 168 h time period with a general approach to control levels by 504 h. Few changes in expression were apparent over the first 6 h. The list of genes whose expression was significantly altered comprised predominantly genes belonging to the biological process category (response to stimulus) and one cellular component category (extracellular region) and were dominated by so-called acute phase proteins. Analysis of the gene expression profile in liver tissue during confinement revealed a number of significant clusters. The major patterns comprised genes that were up-regulated at 24 h and beyond, the primary examples being haptoglobin, ÎČ-fibrinogen and EST10729. Two representative genes from each of the six k-means clusters were validated by qPCR. Correlations between microarray and qPCR expression patterns were significant for most of the genes tested. qPCR analysis revealed that haptoglobin expression was up-regulated approximately 8-fold at 24 h and over 13-fold by 168 h.This project was part funded by the European Commission (Q5RS-2001-02211), Enterprise Ireland and the Natural Environment Research Council of the United Kingdom
    • 

    corecore