15 research outputs found

    System size dependence of cluster properties from two-particle angular correlations in Cu+Cu and Au+Au collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV

    Full text link
    We present results on two-particle angular correlations in Cu+Cu and Au+Au collisions at a center of mass energy per nucleon pair of 200 GeV over a broad range of pseudorapidity (η\eta) and azimuthal angle (ϕ\phi) as a function of collision centrality. The PHOBOS detector at RHIC has a uniquely-large angular coverage for inclusive charged particles, which allows for the study of correlations on both long- and short-range scales. A complex two-dimensional correlation structure in Δη\Delta \eta and Δϕ\Delta \phi emerges, which is interpreted in the context of a cluster model. The effective cluster size and decay width are extracted from the two-particle pseudorapidity correlation functions. The effective cluster size found in semi-central Cu+Cu and Au+Au collisions is comparable to that found in proton-proton collisions but a non-trivial decrease of the size with increasing centrality is observed. Moreover, a comparison between results from Cu+Cu and Au+Au collisions shows an interesting scaling of the effective cluster size with the measured fraction of total cross section (which is related to the ratio of the impact parameter to the nuclear radius, b/2Rb/2R), suggesting a geometric origin. Further analysis for pairs from restricted azimuthal regions shows that the effective cluster size at Δϕ180\Delta\phi \sim 180^{\circ} drops more rapidly toward central collisions than the size at Δϕ0\Delta\phi \sim 0^{\circ}. The effect of limited η\eta acceptance on the cluster parameters is also addressed, and a correction is applied to present cluster parameters for full η\eta coverage, leading to much larger effective cluster sizes and widths than previously noted in the literature. These results should provide insight into the hot and dense medium created in heavy ion collisions.Comment: 9 pages, 8 figures, Published in Phys. Rev.

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Photon and η production in p+Pb and p+C collisions at

    No full text
    Measurements of direct photon production in p+Pb and p+C collisions at √sNN=17.4 GeV are presented. Upper limits on the direct photon yield as a function of pT are derived and compared to the results for Pb+Pb collisions at √sNN=17.3 GeV. The production of the η meson, which is an important input to the direct photon signal extraction, has been determined in the η → 2γ channel for p+C collisions at √sNN=17.4 GeV. © 2012 Elsevier B.V

    Microsoft Word - IEEENSSPhFEE11.doc

    No full text
    Abstract--The Phobos experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory uses silicon pad detectors to measure charged particles from Au-Au collisions. We describe here the front-end electronics which instruments the 135,000-channel silicon partition of the detector. The system records pad "hits" and 12-bit pulse height data for later reconstruction of charged-particle trajectories, and for identification of particle species using the dE/dx method. The compactness of the detector puts challenging spatial and power dissipation constraints on the design of the electronics; the proximity of the silicon sensors and front-end chips to the heavy ion collisions presents a challenge in terms of dealing with latchup. We describe the design features of the principal elements of the front-end including the silicon detector modules, the front-end controller, and the data concentrator. The performance of the system and our experience with the latchup protection during the first two physics runs are presented

    Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at √sNN=200 GeV

    No full text
    This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at [sqrt]sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δeta|2), relative elliptic flow fluctuations of approximately 30–40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude strongercompared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.United States. Department of Energy (Grants DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG02- 94ER40818, DE-FG02-94ER40865, DE-FG02-99ER41099, and DE-AC02-06CH11357)National Science Foundation (Grants 9603486, 0072204, and 0245011)Polish Ministry of Science and Higher Education (Grant N N202 282234 (2008-2010))National Science Council of Taiwan (Contract NSC 89-2112-M-008-024)Hungarian Scientific Research Foundation (grant F 049823

    High transverse momentum triggered correlations over a large pseudorapidity acceptance in Au+Au collisions at sqrt(s_NN)=200 GeV

    No full text
    A measurement of two-particle correlations with a high transverse momentum trigger particle (p[subscript T][superscript trig]>2.5  GeV/c) is presented for Au+Au collisions at √sNN=200   GeV over the uniquely broad longitudinal acceptance of the PHOBOS detector (-4<Δη<2). A broadening of the away-side azimuthal correlation compared to elementary collisions is observed at all Δη. As in p+p collisions, the near side is characterized by a peak of correlated partners at small angle relative to the trigger particle. However, in central Au+Au collisions an additional correlation extended in Δη and known as the “ridge” is found to reach at least |Δη|≈4. The ridge yield is largely independent of Δη over the measured range, and it decreases towards more peripheral collisions. For the chosen p[subscript T][superscript trig] cut, the ridge yield is consistent with zero for events with less than roughly 100 participating nucleons.United States. Dept. of Energy (Grants No. DE-AC02-98CH10886, No. DE-FG02-93ER40802, No. DE-FG02-94ER40818, No. DE-FG02-94ER40865, No. DE-FG02-99ER41099, and No. DE-AC02-06CH11357)National Science Foundation (Grants No. 9603486, No. 0072204, and No. 0245011)Polish MNiSW (Grant No. N202 282234 (2008–2010)NSC of Taiwan (Contract No. NSC 89-2112-M-008-024)Hungarian OTKA (Grant No. F 049823

    Searches for the ZγZ\gamma decay mode of the Higgs boson and for new high-mass resonances in pppp collisions at s=13\sqrt{s} = 13 TeV with the ATLAS detector

    No full text
    International audienceThis article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Zγ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb1^{−1} of pp collisions at s=13 \sqrt{s}=13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Zγ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Zγ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level

    Search for direct top squark pair production in final states with two leptons in s=13\sqrt{s} = 13 TeV pppp collisions with the ATLAS detector

    No full text
    International audienceThe results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1 fb136.1~\hbox {fb}^{-1} of integrated luminosity from proton–proton collisions at s=13\sqrt{s}=13 TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark t~\tilde{t} and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay t~bχ~1±\tilde{t} \rightarrow b \tilde{\chi }_{1}^{\pm } into a b-quark and the lightest chargino with χ~1±Wχ~10\tilde{\chi }_{1}^{\pm } \rightarrow W \tilde{\chi }_{1}^{0} , the decay t~tχ~10\tilde{t} \rightarrow t \tilde{\chi }_{1}^{0} into an on-shell top quark and the lightest neutralino, the three-body decay t~bWχ~10\tilde{t} \rightarrow b W \tilde{\chi }_{1}^{0} and the four-body decay t~bνχ~10\tilde{t} \rightarrow b \ell \nu \tilde{\chi }_{1}^{0} . No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the t~\tilde{t} and χ~10\tilde{\chi }_{1}^{0} masses. The results exclude at 95% confidence level t~\tilde{t} masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches

    Searches for the ZγZ\gamma decay mode of the Higgs boson and for new high-mass resonances in pppp collisions at s=13\sqrt{s} = 13 TeV with the ATLAS detector

    No full text
    International audienceThis article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Zγ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb1^{−1} of pp collisions at s=13 \sqrt{s}=13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Zγ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Zγ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level
    corecore