181 research outputs found

    The microrelief studies of stainless steel mirrors sputtered with Ar⁺ ions of different energy

    No full text
    Four stainless steel mirror specimens were sputtered to an identical mean thickness of the eroded layer 2 μm with Ar⁺ ions. Each specimen was exposed to ions with one kinetic energy from the followings: 300, 600, 1000, and 1350 eV. With the methods of microscopy and profilometry of microrelief the positive correlation was shown between the r. m. s. roughness, the power spectral density of the Fourier spectrum of the longitudinal wavelengths, on one hand, and the energy of ions, on the other hand.Чотири зразки дзеркал із нержавіючої сталі були розпилені до однакової середньої товщини еродованого шару 2 мкм іонами Ar⁺ . Кожен зразок експонувався до іонів з наступною кінетичною енергією:300, 600, 1000 і 1350 еВ. З використанням методів мікроскопії і профілометрії мікрорельєфу було показано позитивну кореляцію між середньоквадратичною шорсткістю, спектральною густиною потужності спектра Фур'є поздовжніх довжин хвиль з одного боку, та енергією іонів з іншого бокуЧетыре образца зеркал из нержавеющей стали были распылены до одинаковой средней толщины эродированного слоя 2 мкм ионами Ar⁺ . Каждый образец экспонировался к ионам со следующей кинетической энергией: 300, 600, 1000 и 1350 эВ. С использованием методов микроскопии и профилометрии микрорельефа была показана положительная корреляция между среднеквадратичной шероховатостью, спектральной плотностью мощности спектра Фурье продольных длин волн с одной стороны, и энергией ионов с другой стороны

    Graphene at liquid copper catalysts: atomic‐scale agreement of experimental and first‐principles adsorption height

    Get PDF
    Liquid metal catalysts have recently attracted attention for synthesizing high-quality 2D materials facilitated via the catalysts' perfectly smooth surface. However, the microscopic catalytic processes occurring at the surface are still largely unclear because liquid metals escape the accessibility of traditional experimental and computational surface science approaches. Hence, numerous controversies are found regarding different applications, with graphene (Gr) growth on liquid copper (Cu) as a prominent prototype. In this work, novel in situ and in silico techniques are employed to achieve an atomic-level characterization of the graphene adsorption height above liquid Cu, reaching quantitative agreement within 0.1 angstrom between experiment and theory. The results are obtained via in situ synchrotron X-ray reflectivity (XRR) measurements over wide-range q-vectors and large-scale molecular dynamics simulations based on efficient machine-learning (ML) potentials trained to first-principles density functional theory (DFT) data. The computational insight is demonstrated to be robust against inherent DFT errors and reveals the nature of graphene binding to be highly comparable at liquid Cu and solid Cu(111). Transporting the predictive first-principles quality via ML potentials to the scales required for liquid metal catalysis thus provides a powerful approach to reach microscopic understanding, analogous to the established computational approaches for catalysis at solid surfaces.Catalysis and Surface Chemistr

    Graphene at liquid copper catalysts: atomic‐scale agreement of experimental and first‐principles adsorption height

    Get PDF
    Liquid metal catalysts have recently attracted attention for synthesizing high-quality 2D materials facilitated via the catalysts' perfectly smooth surface. However, the microscopic catalytic processes occurring at the surface are still largely unclear because liquid metals escape the accessibility of traditional experimental and computational surface science approaches. Hence, numerous controversies are found regarding different applications, with graphene (Gr) growth on liquid copper (Cu) as a prominent prototype. In this work, novel in situ and in silico techniques are employed to achieve an atomic-level characterization of the graphene adsorption height above liquid Cu, reaching quantitative agreement within 0.1 angstrom between experiment and theory. The results are obtained via in situ synchrotron X-ray reflectivity (XRR) measurements over wide-range q-vectors and large-scale molecular dynamics simulations based on efficient machine-learning (ML) potentials trained to first-principles density functional theory (DFT) data. The computational insight is demonstrated to be robust against inherent DFT errors and reveals the nature of graphene binding to be highly comparable at liquid Cu and solid Cu(111). Transporting the predictive first-principles quality via ML potentials to the scales required for liquid metal catalysis thus provides a powerful approach to reach microscopic understanding, analogous to the established computational approaches for catalysis at solid surfaces.Catalysis and Surface Chemistr

    Real-time multiscale monitoring and tailoring of graphene growth on liquid copper

    Get PDF
    The synthesis of large, defect-free two-dimensional materials (2DMs) such as graphene is a major challenge toward industrial applications. Chemical vapor deposition (CVD) on liquid metal catalysts (LMCats) is a recently developed process for the fast synthesis of high-quality single crystals of 2DMs. However, up to now, the lack of in situ techniques enabling direct feedback on the growth has limited our understanding of the process dynamics and primarily led to empirical growth recipes. Thus, an in situ multiscale monitoring of the 2DMs structure, coupled with a real-time control of the growth parameters, is necessary for efficient synthesis. Here we report real-time monitoring of graphene growth on liquid copper (at 1370 K under atmospheric pressure CVD conditions) via four complementary in situ methods: synchrotron X-ray diffraction and reflectivity, Raman spectroscopy, and radiation-mode optical microscopy. This has allowed us to control graphene growth parameters such as shape, dispersion, and the hexagonal supra-organization with very high accuracy. Furthermore, the switch from continuous polycrystalline film to the growth of millimeter-sized defect-free single crystals could also be accomplished. The presented results have far-reaching consequences for studying and tailoring 2D material formation processes on LMCats under CVD growth conditions. Finally, the experimental observations are supported by multiscale modeling that has thrown light into the underlying mechanisms of graphene growth.Catalysis and Surface Chemistr

    Threehalf-turn antennas start-up

    Get PDF
    The start-up experiments were carried out at Uragan-2M stellarator with the Three-Half-Turn antenna (THT) without any pre-ionization. Conditions for optimal gas breakdown were found out through the variation of the neutral gas pressure, magnetic field strength and anode voltage of RF generator. The plasma parameters were measured with three Langmuir probes, optical spectroscopy and mutichord optical diagnostics.На стелараторі Ураган-2М було проведено модельні експерименти зі старту трьохнапіввиткової (ТНВ) антени без предіонізації. Підбором тиску нейтрального газу, напруженості магнітного поля й анодної напруги ВЧ-генератора було знайдено оптимальні умови пробою газу. Параметри плазми вимірювались трьома ленгмюрівськими зондами, оптичною спектроскопією та багатохордовою оптичною діагностикою.На стеллараторе Ураган-2М были проведены моделирующие эксперименты по старту трёхполувитковой (ТПВ) антенны без предионизации. Подбором давления нейтрального газа, напряжённости магнитного поля и анодного напряжения ВЧ-генератора были найдены оптимальные условия пробоя газа. Параметры плазмы измерялись тремя ленгмюровскими зондами, оптической спектроскопией и многохордовой оптической диагностикой

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore