3,075 research outputs found

    Optimizing Quantum Algorithms on Bipotent Architectures

    Full text link
    Vigorous optimization of quantum gates has led to bipotent quantum architectures, where the optimized gates are available for some qubits but not for others. However, such gate-level improvements limit the application of user-side pulse-level optimizations, which have proven effective for quantum circuits with a high level of regularity, such as the ansatz circuit of the Quantum Approximate Optimization Algorithm (QAOA). In this paper, we investigate the trade-off between hardware-level and algorithm-level improvements on bipotent quantum architectures. Our results for various QAOA instances on two quantum computers offered by IBM indicate that the benefits of pulse-level optimizations currently outweigh the improvements due to vigorously optimized monolithic gates. Furthermore, our data indicate that the fidelity of circuit primitives is not always the best indicator for the overall algorithm performance; also their gate type and schedule duration should be taken into account. This effect is particularly pronounced for QAOA on dense portfolio optimization problems, since their transpilation requires many SWAP gates, for which efficient pulse-level optimization exists. Our findings provide practical guidance on optimal qubit selection on bipotent quantum architectures and suggest the need for improvements of those architectures, ultimately making pulse-level optimization available for all gate types

    Improving the Performance of Digitized Counterdiabatic Quantum Optimization via Algorithm-Oriented Qubit Mapping

    Full text link
    This paper presents strategies to improve the performance of digitized counterdiabatic quantum optimization algorithms by cooptimizing gate sequences, algorithm parameters, and qubit mapping. Demonstrations on near-term quantum devices validate the effectiveness of these strategies, leveraging both algorithmic and hardware advantages. Our approach increases the approximation ratio by an average of 4.49×\times without error mitigation and 84.8% with error mitigation, while reducing CX gate count and circuit depth by 28.8% and 33.4%, respectively, compared to Qiskit and Tket. These findings provide valuable insights into the codesign of algorithm implementation, tailored to optimize qubit mapping and algorithm parameters, with broader implications for enhancing algorithm performance on near-term quantum devices

    Emerging Applications of Contrast-enhanced Ultrasound in Trauma

    Get PDF
    The use of contrast-enhanced ultrasound (CEUS) has expanded over the past decade to include a variety of diagnostic and therapeutic applications. These include urgent clinical situations that require timely diagnosis and subsequent treatment. With the introduction of microbubble ultrasound contrast agents (UCAs), CEUS provides increased sensitivity and specificity over conventional ultrasound. Within the trauma setting, CEUS benefits include point of care imaging and an ability to monitor perfusion in real-time. Additionally, UCAs are non-nephrotoxic, and can be used when contrast enhanced CT is contraindicated. In this review, we discuss recent advancements of CEUS within trauma settings

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Risk of malnutrition is associated with mental health symptoms in community living elderly men and women: The Tromsø Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little research has been done on the relationship between malnutrition and mental health in community living elderly individuals. In the present study, we aimed to assess the associations between mental health (particularly anxiety and depression) and both the risk of malnutrition and body mass index (BMI, kg/m<sup>2</sup>) in a large sample of elderly men and women from Tromsø, Norway.</p> <p>Methods</p> <p>In a cross-sectional survey, with 1558 men and 1553 women aged 65 to 87 years, the risk of malnutrition was assessed by the Malnutrition Universal Screening Tool ('MUST'), and mental health was measured by the Symptoms Check List 10 (SCL-10). BMI was categorised into six groups (< 20.0, 20.0-22.4, 22.5-24.9, 25.0-27.4, 27.5-29.9, ≥ 30.0 kg/m<sup>2</sup>).</p> <p>Results</p> <p>The risk of malnutrition (combining medium and high risk) was found in 5.6% of the men and 8.6% of the women. Significant mental health symptoms were reported by 3.9% of the men and 9.1% of the women. In a model adjusted for age, marital status, smoking and education, significant mental health symptoms (SCL-10 score ≥ 1.85) were positively associated with the risk of malnutrition (odds ratio 3.9 [95% CI 1.7-8.6] in men and 2.5 [95%CI 1.3-4.9] in women), the association was positive also for subthreshold mental health symptoms. For individuals with BMI < 20.0 the adjusted odds ratio for significant mental health symptoms was 2.0 [95% CI 1.0-4.0].</p> <p>Conclusions</p> <p>Impaired mental health was strongly associated with the risk of malnutrition in community living elderly men and women and this association was also significant for subthreshold mental health symptoms.</p

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models
    corecore