105 research outputs found

    Reducing dementia risk by targeting modifiable risk factors in mid-life: study protocol for the Innovative midlife intervention for dementia deterrence (In-MINDD) randomised controlled feasibility trial

    Get PDF
    Background Dementia prevalence is increasing as populations live longer, with no cure and the costs of caring exceeding many other conditions. There is increasing evidence for modifiable risk factors which, if addressed in mid-life, can reduce the risk of developing dementia in later life. These include physical inactivity, low cognitive activity, mid-life obesity, high blood pressure, and high cholesterol. This study aims to assess the acceptability and feasibility and impact of giving those in mid-life, aged between 40 and 60 years, an individualised dementia risk modification score and profile and access to personalised on-line health information and goal setting in order to support the behaviour change required to reduce such dementia risk. A secondary aim is to understand participants’ and practitioners’ views of dementia prevention and explore the acceptability and integration of the Innovative Midlife Intervention for Dementia Deterrence (In-MINDD) intervention into daily life and routine practice. Methods/design In-MINDD is a multi-centre, primary care-based, single-blinded randomised controlled feasibility trial currently being conducted in four European countries (France, Ireland, the Netherlands and the UK). Participants are being recruited from participating general practices. Inclusion criteria will include age between 40 and 60 years; at least one modifiable risk factor for dementia risk (including diabetes, hypertension, obesity, renal dysfunction, current smoker, raised cholesterol, coronary heart disease, current or previous history of depression, self-reported sedentary lifestyle, and self-reported low cognitive activity) access to the Internet. Primary outcome measure will be a change in dementia risk modification score over the timescale of the trial (6 months). A qualitative process evaluation will interview a sample of participants and practitioners about their views on the acceptability and feasibility of the trial and the links between modifiable risk factors and dementia prevention. This work will be underpinned by Normalisation Process Theory. Discussion This study will explore the feasibility and acceptability of a risk profiler and on-line support environment to help individuals in mid-life assess their risk of developing dementia in later life and to take steps to alleviate that risk by tackling health-related behaviour change. Testing the intervention in a robust and theoretically informed manner will inform the development of a future, full-scale randomised controlled trial

    Quantitative chemical mapping of InGaN quantum wells from calibrated high-angle annular dark field micrographs

    Get PDF
    We present a simple and robust method to acquire quantitative maps of compositional fluctuations in nanostructures from low magnification high-angle annular dark field (HAADF) micrographs calibrated by energy-dispersive X-ray (EDX) spectroscopy in scanning transmission electron microscopy (STEM) mode. We show that a nonuniform background in HAADF-STEM micrographs can be eliminated, to a first approximation, by use of a suitable analytic function. The uncertainty in probe position when collecting an EDX spectrum renders the calibration of HAADF-STEM micrographs indirect, and a statistical approach has been developed to determine the position with confidence. Our analysis procedure, presented in a flowchart to facilitate the successful implementation of the method by users, was applied to discontinuous InGaN/GaN quantum wells in order to obtain quantitative determinations of compositional fluctuations on the nanoscale

    Job design, employment practices and well-being: a systematic review of intervention studies

    Get PDF
    There is inconsistent evidence that deliberate attempts to improve job design realise improvements in well-being. We investigated the role of other employment practices, either as instruments for job redesign or as instruments that augment job redesign. Our primary outcome was well-being. Where studies also assessed performance, we considered performance as an outcome. We reviewed 33 intervention studies. We found that well-being and performance may be improved by: training workers to improve their own jobs; training coupled with job redesign; and system wide approaches that simultaneously enhance job design and a range of other employment practices. We found insufficient evidence to make any firm conclusions concerning the effects of training managers in job redesign and that participatory approaches to improving job design have mixed effects. Successful implementation of interventions was associated with worker involvement and engagement with interventions, managerial commitment to interventions and integration of interventions with other organisational systems. Practitioner Summary: Improvements in well-being and performance may be associated with system-wide approaches that simultaneously enhance job design, introduce a range of other employment practices and focus on worker welfare. Training may have a role in initiating job redesign or augmenting the effects of job design on well-being

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Democratisation of wellbeing: stakeholder perspectives on policy priorities for improving national wellbeing through paid employment and adult learning

    Get PDF
    Recent policy initiatives in the UK have heightened the degree to which wellbeing can be considered a political construct: The acceptance of different policy options for wellbeing depends on the extent to which those options are responsive to popular wellbeing concerns. Drawing on the views of over 400 people gathered through a variety of methods and across the UK, we outline different stakeholder views of what wellbeing is and the priorities that stakeholders believe should be addressed to improve wellbeing. We draw out the implications for reframing policy debates around wellbeing, the practice of career guidance, academic debates around identified wellbeing priorities, and the best means of developing a policy and a practice-oriented and stakeholder-responsive approach to researching wellbeing

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    corecore