10 research outputs found

    Half-metallicity and magnetism in the Co2_2MnAl/CoMnVAl heterostructure

    Full text link
    We present a study of the electronic structure and magnetism of Co2_2MnAl, CoMnVAl and their heterostructure. We employ a combination of density-functional theory and dynamical mean-field theory (DFT+DMFT). We find that Co2_2MnAl is a half-metallic ferromagnet, whose electronic and magnetic properties are not drastically changed by strong electronic correlations, static or dynamic. Non-quasiparticle states are shown to appear in the minority spin gap without affecting the spin-polarization at the Fermi level predicted by standard DFT. We find that CoMnVAl is a semiconductor or a semi-metal, depending on the employed computational approach. We then focus on the electronic and magnetic properties of the Co2_2MnAl/CoMnVAl heterostructure, predicted by previous first principle calculations as a possible candidate for spin-injecting devices. We find that two interfaces, Co-Co/V-Al and Co-Mn/Mn-Al, preserve the half-metallic character, with and without including electronic correlations. We also analyse the magnetic exchange interactions in the bulk and at the interfaces. At the Co-Mn/Mn-Al interface, competing magnetic interactions are likely to favor the formation of a non-collinear magnetic order, which is detrimental for the spin-polarization.Comment: 15 pages, 16 figure

    Magnetism in Transition Metal Systems : Interplay between structure, dimensionality and electron correlation

    No full text
    In this thesis, an ab initio study of electronic structures and magnetic properties of transition metal systems has been presented, covering bulk, interface and surface geometries. Among them are Fe, Co, Ni, CaMnO3, Co2MnSi, a ferromagnetic Heusler alloy, as well as double-perovskites oxides such as Sr3(Fe1.25Ni0.75)O6 and Nd2NiMnO6. Their electronic structures have been obtained within the framework of the density functional theory (DFT) in combination with Hubbard type interaction such as the static correction evaluated within the Hartree-Fock method (DFT+U) or within the more sophisticated method of dynamical mean-field theory (DFT+DMFT). Using many-body approaches enables us to treat the correlation effects such as non-quasiparitcle states above the Fermi level for Co2MnSi and in the half-metallic side of the Co2MnAl/CoMnVAl heterostructure. Based on the converged electronic structure, the magnetic excitations were mapped onto the Heisenberg Hamiltonian. Among various ways to extract exchange parameters, in this Thesis the method of infinitesimal rotation of the spins has been applied in the framework of the local magnetic force approach. It is shown that the exchange interactions on the surface of transition metals can be substantially different from those in the corresponding bulk. At the same time, the dynamical correlations lead to a slight renormalization of the magnetic couplings. For CaMnO3, we demonstrated the crucial role of the atomic relaxations defining the magnetic order on the surface atoms. We were also able to extract the orbital decompositions, which helped identify the main contributions to the total exchange. For the double-perovskite systems, the extracted exchange parameters were then used to evaluate the ordering temperature using Monte-Carlo simulations, and the calculated critical temperatures were found to be in good agreement with our experimental measurements. In a more technical investigation, the influence of the spin polarization of the DFT exchange-correlation functional on the extracted exchange parameters has been investigated. We found a very good correspondence between the computed total energies and the parametrized Heisenberg model for LDA+U calculations, but not for LSDA+U. This means that for the extraction of the exchange parameters based on total energy differences, LDA+U is more appropriate. Finally, a systematic study of the emergence of the local minima in DFT+U calculations has been performed for the bulk of NiO, FeO, CoO and UO2. We extended the use of the occupation matrix control method to randomly generate density matrices which help better monitor the local minima and explore the energy landscape. The effect of the Hubbard U and the double-counting in introducing the local minima are discussed

    Magnetism in Transition Metal Systems : Interplay between structure, dimensionality and electron correlation

    No full text
    In this thesis, an ab initio study of electronic structures and magnetic properties of transition metal systems has been presented, covering bulk, interface and surface geometries. Among them are Fe, Co, Ni, CaMnO3, Co2MnSi, a ferromagnetic Heusler alloy, as well as double-perovskites oxides such as Sr3(Fe1.25Ni0.75)O6 and Nd2NiMnO6. Their electronic structures have been obtained within the framework of the density functional theory (DFT) in combination with Hubbard type interaction such as the static correction evaluated within the Hartree-Fock method (DFT+U) or within the more sophisticated method of dynamical mean-field theory (DFT+DMFT). Using many-body approaches enables us to treat the correlation effects such as non-quasiparitcle states above the Fermi level for Co2MnSi and in the half-metallic side of the Co2MnAl/CoMnVAl heterostructure. Based on the converged electronic structure, the magnetic excitations were mapped onto the Heisenberg Hamiltonian. Among various ways to extract exchange parameters, in this Thesis the method of infinitesimal rotation of the spins has been applied in the framework of the local magnetic force approach. It is shown that the exchange interactions on the surface of transition metals can be substantially different from those in the corresponding bulk. At the same time, the dynamical correlations lead to a slight renormalization of the magnetic couplings. For CaMnO3, we demonstrated the crucial role of the atomic relaxations defining the magnetic order on the surface atoms. We were also able to extract the orbital decompositions, which helped identify the main contributions to the total exchange. For the double-perovskite systems, the extracted exchange parameters were then used to evaluate the ordering temperature using Monte-Carlo simulations, and the calculated critical temperatures were found to be in good agreement with our experimental measurements. In a more technical investigation, the influence of the spin polarization of the DFT exchange-correlation functional on the extracted exchange parameters has been investigated. We found a very good correspondence between the computed total energies and the parametrized Heisenberg model for LDA+U calculations, but not for LSDA+U. This means that for the extraction of the exchange parameters based on total energy differences, LDA+U is more appropriate. Finally, a systematic study of the emergence of the local minima in DFT+U calculations has been performed for the bulk of NiO, FeO, CoO and UO2. We extended the use of the occupation matrix control method to randomly generate density matrices which help better monitor the local minima and explore the energy landscape. The effect of the Hubbard U and the double-counting in introducing the local minima are discussed

    Magnetic two-dimensional electron liquid at the surface of Heusler semiconductors

    No full text
    Conducting and magnetic properties of a material often change in some confined geometries. However, a situation where a nonmagnetic semiconductor becomes both metallic and magnetic at the surface is quite rare, or maybe even unique. In this Rapid Communication, we employ first-principles electronic structure theory to predict that such a peculiar magnetic state emerges in a family of quaternary Heusler compounds. We investigate magnetic and electronic properties of CoCrTiP, FeMnTiP, and CoMnVAl. For the latter material, we also analyze the structural stability of various surface terminations. For the ideal CoMn termination we calculate the magnetic exchange interactions and use them for parametrizing an effective spin Hamiltonian. According to our results, magnetism in this material should persist at temperatures at least as high as 160 K

    Aromatic Plants: use and nutraceutical properties

    No full text
    In the last years it has progressively been observed a substantial increase in the use of aromatic herbs and essential oils. Mediterranean area represents a particular environment in which many constraint factors (high light, temperature, drought, salinity, air pollution, etc.) induce a wide range of secondary metabolites in plants. These compounds can be useful utilized by humans for different applications: antibiotics, antimycotic, animal nutrition, cosmetics, food additives, biorepellents, etc. This paper reviews the literature on recent agro-industrial applications of Mediterranean plant species and medicinal plants used for the treatment of infectious diseases. The review includes accounts of extracts, essential oils and other active principles isolated from plants that have been used by folk medicine as antimicrobial agents. The name and part of the studied plants, spectrum of activity, type of active compounds and methods used are discussed and their mechanisms of action as well
    corecore