55 research outputs found

    Dynamic Characterization of an Adaptive Film-Riding Seal

    Get PDF
    Shaft seals control the leakage of fluid between areas of high pressure and low pressure around rotating components inside turbomachinery. Static seals are often subject to damaging rubs with the shaft, caused by assembly misalignments and rotordynamic vibrations during operation. Adaptive seals aim to reduce leakage flows whilst minimizing wear. The Film Riding Pressure Actuated Leaf Seal (FRPALS) is one such design which utilizes a large installation clearance and is blown down towards the shaft under pressure.This paper presents a numerical model which can be used in the design and development of adaptive shaft seals, validated by experimental data from the literature. The model uses a modified version of the Reynolds equation to predict the dynamic, frequency-dependent stiffness and damping coefficients of the fluid film. The dynamic coefficients have been solved for different operational clearances and pressure differences to generate coefficient maps. These maps have been incorporated into a blow down model with compliant mechanical leaves to predict the transient translational and angular displacement paths of the FRPALS when subject to an increasing pressure drop.The blow down model has been compared against experimental measurements collected from a specially designed test facility for the characterization of shaft seal performance. Eddy current probes were used to measure the displacement paths of the FRPALS with the experimental values showing that the model can accurately predict the dynamic movement of the seal when subject to a pressure difference

    Illumina MiSeq Phylogenetic Amplicon Sequencing Shows a Large Reduction of an Uncharacterised Succinivibrionaceae and an Increase of the Methanobrevibacter gottschalkii Clade in Feed Restricted Cattle

    Get PDF
    peer-reviewedPeriodic feed restriction is used in cattle production to reduce feed costs. When normal feed levels are resumed, cattle catch up to a normal weight by an acceleration of normal growth rate, known as compensatory growth, which is not yet fully understood. Illumina Miseq Phylogenetic marker amplicon sequencing of DNA extracted from rumen contents of 55 bulls showed that restriction of feed (70% concentrate, 30% grass silage) for 125 days, to levels that caused a 60% reduction of growth rate, resulted in a large increase of relative abundance of Methanobrevibacter gottschalkii clade (designated as OTU-M7), and a large reduction of an uncharacterised Succinivibrionaceae species (designated as OTU-S3004). There was a strong negative Spearman correlation (ρ = -0.72, P = <1x10-20) between relative abundances of OTU-3004 and OTU-M7 in the liquid rumen fraction. There was also a significant increase in acetate:propionate ratio (A:P) in feed restricted animals that showed a negative Spearman correlation (ρ = -0.69, P = <1x10-20) with the relative abundance of OTU-S3004 in the rumen liquid fraction but not the solid fraction, and a strong positive Spearman correlation with OTU-M7 in the rumen liquid (ρ = 0.74, P = <1x10-20) and solid (ρ = 0.69, P = <1x10-20) fractions. Reduced A:P ratios in the rumen are associated with increased feed efficiency and reduced production of methane which has a global warming potential (GWP 100 years) of 28. Succinivibrionaceae growth in the rumen was previously suggested to reduce methane emissions as some members of this family utilise hydrogen, which is also utilised by methanogens for methanogenesis, to generate succinate which is converted to propionate. Relative abundance of OTU-S3004 showed a positive Spearman correlation with propionate (ρ = 0.41, P = <0.01) but not acetate in the liquid rumen fraction.This study was supported by the Science Foundation Ireland (http://www.sfi.ie) (Contract number SFI 09/RFP/GEN2447-awarded to SMW) and Teagasc Walsh Fellowship Funding (www.teagasc.ie) (Teagasc project RMIS 6341-awarded to SMW)

    Di-aryl guanidinium derivatives: Towards improved α2-Adrenergic affinity and antagonist activity

    Get PDF
    Compounds with excellent receptor engagement displaying alpha(2)-AR antagonist activity are useful not only for therapeutic purposes (e.g. antidepressants), but also to help in the crystallization of this particular GPCR. Therefore, based on our broad experience in the topic, we have prepared eighteen di-aryl (phenyl and/or pyridin-2-yl) mono- or di-substituted guanidines and 2-aminoimidazolines. The in vitro alpha(2)-AR binding affinity experiments in human brain tissue showed the advantage of a 2-aminoimidazolinium cation, a di-arylmethylene core, a conformationally locked pyridin-2-yl-guanidine and a di-substituted guanidinium to achieve good alpha(2)-AR engagement. After different in vitro [S-35]GTP gamma S binding experiments in human prefrontal cortex tissue, it was possible to identify that compounds 7a, 7b and 7c were alpha(2)-AR partial agonist, whereas 8h was a potent alpha(2)-AR antagonist. Docking and MD studies with a model of alpha(2A)-AR and two crystal structures suggest that antagonism is achieved by compounds carrying a di-substituted guanidine which substituent occupy a pocket adjacent to TM5 without engaging S200(5.42) or S204(5.46), and a mono-substituted cationic group, which favorably interacts with E94(2.65). (c) 2020 Elsevier Masson SAS. All rights reserved.Thanks are given to the School of Chemistry at Trinity College Dublin (M.McM.) and to the Irish Research Council (A.K. -GOIPG/2014/457-and H.B.M. -GOIPG/2017/834-) for postgraduate support. This study was also supported by the Ministerio de Economia y Competitividad of Spain (SAF2013-48586-R) and the Basque Government (IT1211-19). The authors would like to thank the staff members of the Basque Institute of Legal Medicine for their cooperation in the study

    Multi-locus phylogeny and species delimitation of Australo-Papuan blacksnakes (Pseudechis Wagler, 1830: Elapidae: Serpentes)

    Get PDF
    Genetic analyses of Australasian organisms have resulted in the identification of extensive cryptic diversity across the continent. The venomous elapid snakes are among the best-studied organismal groups in this region, but many knowledge gaps persist: for instance, despite their iconic status, the species-level diversity among Australo-Papuan blacksnakes (Pseudechis) has remained poorly understood due to the existence of a group of cryptic species within the P. australis species complex, collectively termed ‘‘pygmy mulga snakes”. Using two mitochondrial and three nuclear loci we assess species boundaries within the genus using Bayesian species delimitation methods and reconstruct their phylogenetic history using multispecies coalescent approaches. Our analyses support the recognition of 10 species, including all of the currently described pygmy mulga snakes and one undescribed species from the Northern Territory of Australia. Phylogenetic relationships within the genus are broadly consistent with previous work, with the recognition of three major groups, the viviparous red-bellied black snake P. porphyriacus forming the sister species to two clades consisting of ovoviviparous specie

    The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances

    Get PDF
    In the last five years there have been a large number of new time series classification algorithms proposed in the literature. These algorithms have been evaluated on subsets of the 47 data sets in the University of California, Riverside time series classification archive. The archive has recently been expanded to 85 data sets, over half of which have been donated by researchers at the University of East Anglia. Aspects of previous evaluations have made comparisons between algorithms difficult. For example, several different programming languages have been used, experiments involved a single train/test split and some used normalised data whilst others did not. The relaunch of the archive provides a timely opportunity to thoroughly evaluate algorithms on a larger number of datasets. We have implemented 18 recently proposed algorithms in a common Java framework and compared them against two standard benchmark classifiers (and each other) by performing 100 resampling experiments on each of the 85 datasets. We use these results to test several hypotheses relating to whether the algorithms are significantly more accurate than the benchmarks and each other. Our results indicate that only 9 of these algorithms are significantly more accurate than both benchmarks and that one classifier, the Collective of Transformation Ensembles, is significantly more accurate than all of the others. All of our experiments and results are reproducible: we release all of our code, results and experimental details and we hope these experiments form the basis for more rigorous testing of new algorithms in the future

    Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    Get PDF
    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The g-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergen

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants

    Whole-genome sequence-based analysis of thyroid function

    Get PDF
    Tiina Paunio on työryhmän UK10K Consortium jäsen.Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF >= 1%) associated with TSH and FT4 (N = 16,335). For TSH, we identify a novel variant in SYN2 (MAF = 23.5%, P = 6.15 x 10(-9)) and a new independent variant in PDE8B (MAF = 10.4%, P = 5.94 x 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/ SLC25A52 (MAF = 3.2%, P = 1.27 x 10(-9)) tagging a rare TTR variant (MAF = 0.4%, P = 2.14 x 10(-11)). All common variants explain >= 20% of the variance in TSH and FT4. Analysis of rare variants (MAFPeer reviewe

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore