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Ternary structure reveals mechanism of a
membrane diacylglycerol kinase
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Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to

phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral

membrane trimer, which has 121 residues per subunit, means that available protein must be

used economically to craft three catalytic and substrate-binding sites centred about the

membrane/cytosol interface. How nature has accomplished this extraordinary feat is

revealed here in a crystal structure of the kinase captured as a ternary complex with bound

lipid substrate and an ATP analogue. Residues, identified as essential for activity by

mutagenesis, decorate the active site and are rationalized by the ternary structure. The

g-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of

the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme

is proposed. The active site architecture shows clear evidence of having arisen by convergent

evolution.
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D
iacylglycerol kinase (DgkA) is the smallest known
kinase. In Escherichia coli, it is responsible for the
adenosine triphosphate (ATP)-dependent phosphoryla-

tion of diacylglycerol (DAG) to phosphatidic acid used in
periplasm membrane-derived oligosaccharide synthesis in
response to osmotic shock1. The enzyme has long served as a
model for integral membrane enzymology1–3, folding4–6,
assembly7–9 and stability10,11. It is a trimer with three active
sites of the shared sites type that exhibits moderate positive
heteroallostery, random-binding kinetics and lipid substrate
promiscuity1.

High-resolution X-ray structures of wild-type (WT) and
functional thermostable mutants (D4, D7) of DgkA were obtained
using protein crystallized in a membrane environment by the
lipid cubic phase (LCP) or in meso method12. In contrast to a
solution NMR structure that displayed domain swapping13, the
crystallized kinase showed a simple quaternary arrangement
in which adjacent monomers created shared active sites.
Considerable effort was devoted to demonstrating that the
enzyme was functionally active in the crystal12. While the
model included a lipid substrate, a monoacylglycerol (7.8 MAG),
its functional relevance remained uncertain in the absence of a
nucleotide bound structure. Here we report such a structure,
along with mutagenesis studies, molecular dynamics simulations
(MDS) and density functional theory (DFT) modelling, which
explain a wealth of biochemical and biophysical data and support
a mechanism for direct transphosphorylation by this diminutive
kinase.

Results
Crystallization and overall structure. Because DgkA was
crystallized in the LCP composed of MAGs (ref. 14), which
double as lipid substrates15, solving a structure with ATP
bound was impossible – the enzyme turns over catalytically as
soon as nucleotide is added. Therefore, the enzyme was co-
crystallized with the non-hydrolysable ATP analogue,
adenylylmethylenediphosphonate (ACP). Producing structure-
grade crystals of the complex involved extensive screening of
protein constructs and crystallization conditions including host
lipid MAGs. Best crystals, providing a ternary complex structure
with ACP and lipid bound at 2.7 Å resolution (Table 1), were
obtained with D4-DgkA grown in 9.9 MAG at 4 �C and soaked
with zinc-ACP.

Like the apo-enzyme12, the ternary complex is a homo-trimer
(Fig. 1a,b). Each subunit has four helices, three of which are
largely membrane embedded (H1-3), whereas the fourth, an
N-terminal amphiphilic surface helix (SH), anchors the protein at
the membrane interface (Supplementary Fig. 1a). Stereo images of
individual subunit models and the electron density on which the
models are based are shown in Supplementary Fig. 2. H2 and H3
extend out of the membrane and are connected by a cytosolic
loop (CL) whose conformation and sequence position in the
protein differ between subunits in ways that may have functional
consequences (Supplementary Fig. 3), as discussed below.
Individual subunits are identified suA, suB and suC. The trimer
has three active sites of the shared sites type. Each site has
contributions from two subunits, identified asAB, asBC and
asCA, where asAB is created by the SH of suA and H1-3 of suB.
In the complex, asBC has zinc-ACP and lipid bound (Fig. 1a,b).
The other two sites are nucleotide-free.

Ternary complex structure. The ternary complex site, asBC,
contains zinc-ACP and two lipid substrates (Fig. 1a). The zinc-
ACP is close to fully extended and is secured by electrostatic,
hydrogen bonding and hydrophobic interactions along its length

on the relatively flat, cytosol-exposed surface of H2C and H3C
(Fig. 1a,c,d). The enzyme has a requirement for metal ions,
known to be satisfied by zinc16. The two zinc atoms (Zn1, Zn2)
bound to ACP were identified and positioned in the complex by
anomalous scattering (Fig. 1e). They are bidentately coordinated,
respectively, by the b- and g- and the a- and g-phosphates of
ACP and fasten the polyphosphate to conserved residues Glu28C
and Glu76C (Supplementary Table 1 and Supplementary Fig. 1b)
in the active site in ways that make catalytic sense (Fig. 2a). MDS
illustrate interactions between the g-phosphate and the backbone
amides of Ala29C and Ala30C (Supplementary Movie 1), both of
which contribute to the helix dipole of H1C.

The two hydroxyls of ribose in ACP are tightly hydrogen
bonded to the side-chain carboxyl of the essential Asp95C
(Fig. 3a). These contribute to substrate binding and specificity,
and explain why 20-deoxy-ATP, with one less hydroxyl anchor to
the protein, is a considerably poorer substrate2. Hydrophobic
interactions between the non-polar surface of the ribose and the
methylenes of Lys94C, itself a critical residue9,13 (Fig. 2b),
contribute to fixing the ribose in place and to having it correctly
oriented (Fig. 3a).

The purine ring of ACP is locked in position by hydrogen
bonds between the N1 and N6 of adenine and the backbone
linkage of His87C and Glu85C, respectively, in CLC (Fig. 3a).
Such backbone-adenine interactions form the basis of nucleotide
recognition by analogy with base pairing in nucleic acids.
Backbone interactions are relatively residue non-specific. This
explains mutagenesis work where neither residue was identified as
essential (Fig. 2b and Supplementary Table 1). Between Glu85
and His87 is Tyr86C whose tyrosyl ring hovers close to the adenyl
of ACP poised for p–p stacking to lock adenine firmly against the
protein (Supplementary Fig. 3c,f). We refer to these three
sequential residues as the clamping triad. The purine is secured
too by its N7 interaction with the e-amino of Lys94C, which also
interacts with the a-phosphate of ATP, and is tethered in place by
a salt bridge with Asp80C (Fig. 3a). As expected, this position is,
by contrast, sensitive to mutation. Together with Glu85C, His87C
and Asp95C, Lys94C acts like a multiply tipped pincer to lock the
adenosine of ACP in a specific orientation on the protein
(Fig. 3a). Measured kcat values of DgkA for guanosine tripho-
sphate (GTP) and inosine triphosphate (ITP) are reduced by
orders of magnitude compared with ATP (ref. 2). This purine
selectivity makes sense in light of the ternary structure. Thus,
replacing the N6 in adenine with an O6 in guanine or inosine
would lead to unfavourable interactions between the two purines
and adjacent backbone carbonyls of Gly83, Ser84, Glu85 and
Val79. Clear evidence of instability with GTP was observed by
MDS. Likewise, the crystal structure is not compatible with tight
pyrimidine nucleotide binding, consistent with the observation that
while adenine nucleotides dissolved crystals of DgkA, cytidine
triphosphate (CTP), uridine triphosphate (UTP) and thymidine
triphosphate (TTP) did not12. MDS show that ATP is extremely
stably bound with the same orientation and interactions as ACP in
the crystal structure (Fig. 4a and Supplementary Movie 1). ACP is
therefore a reliable ATP analogue.

The ternary complex asBC contains two lipid substrates
(MAG1, MAG2; Fig. 1a). MAG1 has been modelled into the
electron density map with its headgroup deep in the protein
positioned at the level of the membrane interface with its reactive
1-OH next to the g-phosphate of ACP (Fig. 1c,f). MAG2 is in the
putative lipid substrate-binding pocket, with its headgroup B4Å
from MAG1. Their acyl chains extend into the membrane along
the hydrophobic surface of the protein. Since DAG, with two acyl
chains, is the canonical lipid substrate of DgkA (ref. 2), finding a
pair of MAGs as noted, implies they demark the lipid substrate-
binding site.
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The electron density for MAGs in the complex is variable and
in parts, discontinuous (Supplementary Fig. 4a–d). However,
in our studies of DgkA to date, we have crystal structures that
include a total of 10 trimers with density in the active site for
bound lipid that is variable (refs 12,17 and this work). Mapping
these onto a single active site makes a convincing case that lipids
reside in the binding pocket (Supplementary Fig. 4e–g). Their
variable definition likely reflects acyl chain flexibility and lipid
movement during reaction.

The two other active sites in the complex lack nucleotide
(Fig. 1b). asAB has two MAGs situated similar to those in
asBC. Like asBC, asAB includes an almost complete SH
that creates a well-defined active site. By contrast, the SH of
asCA is not visible in density until Ser17A. Accordingly, this
active site appears wide open (Fig. 1b). It contains just one,
distant MAG.

Reaction mechanism. Mutational studies have identified residues
in DgkA that impact on catalysis (refs 9,13 and this work). They
include Thr8, Arg9, Ser17, Gly20, Glu28, Ala30, Glu34, Glu69,
Asn72, Ser73, Glu76, Asp80, Gly83, Ser90, Lys94, Asp95,
Gly97 and Ala100 (Fig. 2b). Convincingly, 14 out of the 18 are
proximal (r5Å) to the nucleotide and lipid substrates in the
ternary complex and all are exposed to solvent during the MDS
(Fig. 3a–c, Supplementary Fig. 5). They demark the substrate
binding and catalytic sites. The putative catalytic site resides on
the protein at the membrane/cytosol interface where the reactive
moieties of the two substrates, with disparate polarities, come
together for reaction.

The active site includes glutamates and an aspartate predicted
to play roles in substrate binding and catalysis (Fig. 3a,b).
Concerns have been raised generally regarding possible X-ray
damage to anionic residues18 and to irrelevant conformational

Table 1 | Crystallization conditions, data collection and refinement statistics.

D4-99MAG-ACP D4-99MAG-ACP-Zn D4-99MAG D7-79MAG-FEL* D7-79MAG*

Crystallization conditions
Construct D4 D4 D4 D7 D7
Host lipid 9.9 MAG 9.9 MAG 9.9 MAG 7.9 MAG 7.9 MAG
Zinc-ACP Yes/soak Yes/soak No No No
Temperature (K) 277 277 277 293 277

Data collection
X-ray source Synchrotron Synchrotron Synchrotron FEL Synchrotron
Temperature (K) 100 100 100 294 100
Space group P3121 P3121 P3121 P212121 P212121
Cell dimensions
a, b, c (Å) 72.94, 72.94,

195.80
73.08, 73.08,

196.00
72.80, 72.80,

199.32
75.30, 91.80,

141.70
75.02, 91.31,

143.70
a, b, g (�) 90, 90, 120 90, 90, 120 90, 90, 120 90, 90, 90 90, 90, 90
Wavelength (Å) 1.0331 1.2824 1.0332 1.302 1.0332
Resolution (Å) 53.07–2.70

(2.77–2.70)w
53.17–3.20
(3.29–3.20)w

45.73–3.15
(3.23–3.15)w

40.50–2.18
(2.24–2.18)w

75.02–2.18
(2.24–2.18)w

Rmerge
z 0.117 (0.855)w 0.099 (0.667)w 0.126 (1.739)w n/a 0.100 (1.267)w

Rpim
z,(Syn) or

Rsplit (FEL)
z

0.051 (0.504)w 0.058 (0.397)w 0.042 (0.573)w 0.068 (2.380)w 0.058 (0.735)w

I/sI 11.9 (1.6)w 12.8 (2.8)w 11.9 (1.4)w 19.0 (0.44)w 12.1 (1.7)w

Completeness (%) 99.3 (94.1)w 99.4 (99.9)w 99.7 (99.8)w 100 (100)w 99.1 (96.8)w

Multiplicity 9.1 (5.3)w 7.0 (7.2)w 10.7 (11.0)w 3,466 (3,519)w 6.7 (6.4) w

CC*z 0.999 (0.861)w 0.999 (0.971)w 0.999 (0.847)w 0.999 (0.578)w 0.999 (0.736)w

Refinement
Resolution (Å) 53.08–2.70 45.73–3.15 40.01–2.18 57.97–2.18
No. reflections 17,165 11,121 51,799 51,436
Rwork/Rfree

y 0.219 (0.278)/0.258
(0.340)y

0.224 (0.272)/0.268
(0.329)y

0.208 (0.378)/0.236
(0.388)y

0.200 (0.311)/0.235
(0.369)y

No. atoms 2,804 2,754 5,225 5,263
Protein 2,584 2,591 4,919 4,861
Ligand/ion 207 163 221 271
Water 13 0 85 131

B-factors (Å2) 92.9 97.8 70.4 60.1
Protein 91.3 97.2 69.5 59.0
Ligand/ion 112.7 106.7 90.0 77.4
Water 92.4 n/a 71.8 64.7

R.m.s deviations
Bond lengths (Å) 0.012 0.016 0.008 0.014
Bond angles (�) 0.749 1.286 0.963 0.896

PDB ID 4UXX 4UXW 4UYO 4UXZ

*The Ca root-mean-square deviation (RMSD) between D7-79MAG-FEL and D7-79MAG is 0.35Å over 598 residues.
wHighest resolution shell is shown in parenthesis.

zRmerge ¼
P

hkl
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j
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yR factors for the highest resolution shell are shown in parenthesis.
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substates trapped as a result of collecting diffraction data with an
intense synchrotron microbeam at 100K (refs 19,20). To address
these issues we have obtained a structure by serial femtosecond
crystallography (SFX) with an X-ray free-electron laser (XFEL) at
room temperature (RT) and ahead of radiation damage21–23

(Table 1). It suggests that damage and ‘frozen’ conformational
substates were not major issues under current conditions and that
the ternary complex structure reported here is reliable.
Alternative conformers for side chains of three critical residues,
Glu34, Glu69 and Glu76, were observed in the XFEL structure at
RT that may be functionally relevant, as discussed (Fig. 5a,b,d,e).

Convincing kinetic and biochemical evidence supports a direct,
in-line phosphoryl transfer mechanism for DgkA (ref. 2). This is
in contrast to one that requires the formation of an enzyme-
phosphate intermediate with subsequent phosphotransfer to the
lipid substrate. The direct route displays a hallmark, trigonal
bipyramidal phosphorus intermediate and a random kinetic
pathway where one substrate does not exclude the binding of the
other. Further, the g-phosphate of ATP should be proximal to the
1-OH of the lipid substrate. This is what was observed in the
ternary complex where the two entities are poised for reaction
B4Å apart (Fig. 3c). The separation is reminiscent of what has
been interpreted for DgkA and for water-soluble kinases, where a
tetraphosphate analogue of the bisubstrate (ATP-DAG in the

case of DgkA) is a better inhibitor than the bisubstrate itself2.
Presumably, the extra space accommodates both substrates, the
reactive moieties of which are brought together for reaction by a
small conformational change in the protein.

Glu69 is a conserved, essential residue in DgkA (refs 9,13;
Fig. 2b, Supplementary Table 1, Supplementary Fig. 1b). In the
liganded asBC, its carboxyl is in hydrogen-bonding distance to
the 1-OH of MAG1 (Fig. 3c). By analogy with other kinases24, we
propose that Glu69 initiates catalysis by abstracting a proton from
this primary hydroxyl. In this configuration, the proximal Glu34C
(Fig. 5a, Supplementary Fig. 6, and Supplementary Fig. 7) is
predicted to have a pKa of 7.53 and therefore will be protonated at
neutral pH, acting as a hydrogen bond donor to Glu69C at rest.
This is a stable configuration in the MDS. Due to the hydrophobic
nature of the pocket, deprotonation of Glu34C will elevate the pKa

of Glu69C making it a stronger base and a better general-base
catalyst. We hypothesize, therefore, that deprotonation of Glu34C
is the trigger for catalysis in a substrate-loaded enzyme.
Interestingly, in the XFEL structure of the apo-enzyme there
are two conformations for Glu34 and Glu69. One of each
conformer has a matching partner in the cryo structure described
above that can be isolated from the MDS by switching the
protonation states of Glu34C and Glu69C. In the case of Glu69,
the alternate conformation extends deeper into the membrane
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Figure 1 | Overall structure of the DgkA-ACP-lipid ternary complex. (a,b) Views of the kinase trimer parallel to the membrane and from the cytosol,

respectively, with subunits represented as brown, blue and green ribbons. ACP and lipid are shown in stick representation. The two grey spheres represent

zinc. Putative membrane boundaries are shown as black lines. Active site asBC contains both ACP and lipid substrate. MAG1 and MAG2 are shown with

carbons coloured black and violet, respectively. (c) Expanded view of zinc-ACP in the binding site. (d) Feature enhanced map (Methods section) of Zn-ACP

at 1 s. (e) Anomalous density maps for zinc contoured at 4.0 s. (f) Feature enhanced map for lipid MAG1 in asBC contoured at 1 s.
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and has a predicted pKa value of 8.82. This is reflected in the
MDS, where protonation of Glu69C induces a side-chain switch
to this conformation and inversion of the hydrogen-bonding
configuration with Glu34C. This is likely to be the side-chain
rotamer after the proton has been removed from the primary
hydroxyl of the lipid substrate. Alternatively, this may guide
substrate lipid entering from the bilayer to the active site
(Fig. 5d,e). With Glu34, the two conformers may also provide a
switch that controls the pKa and basicity of Glu69. The lipid
alkoxide formed on proton abstraction is in position to attack the
g-phosphate of ATP which leads to the formation of the
pentavalent intermediate, stabilized by Asn72C and/or Arg9B
(Figs 2a, 3b and 5c). Collapse of the intermediate severs the b� g
linkage, generating lyso-phosphatidic acid and ADP as products.
Since both are negatively charged, product egress might be aided
by electrostatic repulsion from anionic residues Glu69C and
Glu76C in the active site, accompanied by metal-binding site
rearrangement, and by cationic residues Arg9 and Lys12 in the
SH proposed to draw the lipid out as the SH flexes away from
the site (Fig. 4f). On release, the active site is reset for another

round of catalysis, with Glu34 reprotonating from Glu69
(Supplementary Figs 6,7).

MDS show clearly that ADP is positionally unstable in the
binding site (Fig. 4f, Supplementary Movie 1). DFT simulations
on MDS-sampled configurations displaying intimate MAG1
contacts (similar to Fig. 3c) suggest that 1-OH proton abstraction
by Glu69C is kinetically more accessible than phosphate cleavage
(Supplementary Fig. 8, Methods section). In accord with the
proposed pentavalent stabilization by Asn72C and/or Arg9B
(Fig. 2a), the cleavage step is likely to be rate-limiting.

Two MAGs have been modelled in the liganded asBC. The
1-OH of MAG1 is proximal to the carboxyl of the putative
catalytic Glu69C (Fig. 3c). Ser98C interacts with the 2-OH of
MAG1 which, in the case of the canonical substrate DAG, would
be in ester linkage to an acyl chain. The carbonyl oxygen at the
ester linkage in MAG1 is within hydrogen-bonding distance of
critically important Ser17B. Together, these interactions with
highly conserved and/or critical residues fix the headgroup of the
lipid substrate in position for proton abstraction by Glu69C and
for reaction with the g-phosphorus of ATP (Fig. 3c). The lipid
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acyl chains reside within or close to a three-walled hydrophobic
pocket created by the transmembrane stretches of H1-3C
(Supplementary Fig. 4e–g). The pocket appears to use the bulky
and highly conserved Trp112C (Supplementary Table 1 and
Supplementary Fig. 1b) with the plane of its indole ring oriented,
by hydrogen bonding to Ser61C in the trimer core, to create a base
for the pocket below which the chains do not extend
(Supplementary Fig. 4f). Its location towards the bilayer
mid-plane may contribute to defining lipid substrate chain-length
preference.

Comparison with other kinases. In support of the proposed
mechanistic model, we note the striking resemblance between
critical residues in the active site of DgkA and their equivalents
in cAMP-dependent protein kinase (PKA) for which a similar
catalytic mechanism is well established24,25 (Fig. 2a). To begin
with, the catalytic residue in both kinases is anionic, Glu69 in
DgkA and Asp166 in PKA. While magnesium is a common ATP
counter-ion in kinases, zinc can serve this role in DgkA (ref. 16).
Both zinc ions in the ternary complex bind electrostatically with
the g-phosphate of ACP and, by electron withdrawing effects,
render the phosphorus more susceptible to attack by the lipid
nucleophile. The same kind of interaction is seen in PKA. Lys94C
coordinates with the a-phosphate of ACP in a manner analogous
to its counterpart, Lys72, in PKA. Lys94C is stabilized in position
by a critical Asp80C, just like the Lys72-Glu91 pair in PKA. The
essential Glu76C chelates the two zincs which, in turn, bind the
triphosphate of ACP. The equivalent residue in PKA is Asp184.
Parenthetically, a second conformation for the side chain of
Glu76C is present in the XFEL apo-structure which is more
removed from the metal ions; it may play a role in product release
(Fig. 5b). Arg9 is functionally important and mutating it
dramatically alters DgkA activity. While its side chain lacks full
density in the DgkA complex, one of its possible conformers
makes a convincing interaction with the a-phosphate of ACP,
reminiscent of the role played by Lys168 in PKA. Asn72 is
essential in DgkA (Fig. 2b and Supplementary Table 1). Its
side-chain carbonyl is 4.1 Å from Zn2 while its amide nitrogen

bridges the essential Glu69 and Glu76 (Fig. 5c). The equivalent
residue in PKA is Asn171; it bridges Asp166 and Asp184 and its
carbonyl is 2.1 Å from manganese (Mn1).

The similarity between the binding sites of DgkA and PKA
extends to the adenosine end of the nucleotide. Thus, the
aforementioned clamping triad on adenine in the CL of DgkA
that includes Glu85-Tyr86-His87 is matched by an almost
identical triad in PKA represented by Glu121-Tyr122-Val123
(Figs 2a and 6). At the same time, the two ribose hydroxyls
are anchored by Asp95 in DgkA and by Glu127 in PKA. The
resemblance between residues in and chemical architecture of the
active sites of DgkA and PKA is remarkable given that the
two kinases are evolutionarily unrelated and have essentially no
primary through quaternary structure similarities.

Mutagenesis. With the ternary complex structure in hand,
hypotheses regarding the role of specific residues in DgkA
enzymatic activity were tested by systematic mutagenesis. Kinetic
measurements were performed with the mutants reconstituted in
the LCP. A total of 23 sites were mutated with the types screened
dictated by the putative role for the particular residue. The results
are summarized in Fig. 2b and Supplementary Table 1 along with
data from separate mutational studies9,13. A few notable mutants
will be discussed here, as follows. (i) Glu69 is the putative
catalytic residue in DgkA (Figs 2a and 3c), in contrast to Asp
which serves that function in serine protein kinases. Strikingly,
Glu69 tolerated none of the mutations tested, one of which was
Asp (pKa 3.8). This could be a spatial effect because the side chain
of Asp is too short. It may also have to do with the fact that the
1-OH in glycerides like MAG and DAG have pKa values (13.6)
higher than those of PKA substrates Ser/Thr (pKa 13.0).
Glycerides therefore may require the carboxyl of Glu, with a
pKa of 4.3, or higher enabled by nearby Glu34, for proton
abstraction. (ii) The conserved Asp95 coordinates the hydroxyls
of ribose in ACP, preserved throughout the MDS, and the
carbonyl of Gly91 (Fig. 3a). Mutating it to Ala essentially
abolished activity. However, Glu with its longer side chain did
substitute but activity was reduced by 76%. By contrast, Asn had a
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nitrogen are coloured red and blue, respectively. (b) Binding of the zinc-triphosphate moiety of zinc-ACP to asBC. Lipid carbons are coloured black.

Distances for zinc coordination range from 2.0 to 2.2Å. The asterisks indicate that little or no electron density was observed for the side chains of Arg9 and

Glu28. However, interactions with zinc-ACP, of the type noted, were seen with both residues in MDS (Supplementary Movie 1). (c) The putative active site

of DgkA where the catalytic residue Glu69C, ACP and lipid substrate MAG1 meet in asBC. The glycerol headgroup of MAG1 could not be oriented

unambiguously in the active site based on the available electron density maps, even at 2.05Å resolution (Supplementary Fig. 4a–d). Accordingly, the

interactions between MAG1 and the enzyme are shown as dashed lines only and without specifying distances. The orientation shown, with the 1-OH in

hydrogen-bonding distance to the carboxyl group of Glu69, is plausible in light of a careful consideration of the available maps and the nature of the lipid

substrate and the reaction being catalysed.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10140

6 NATURE COMMUNICATIONS | 6:10140 |DOI: 10.1038/ncomms10140 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


minor effect which makes sense given that its side-chain amide
can hydrogen bond with carbonyls and hydroxyls. (iii) Ala30
resides on H1 in the active site entrance at the membrane
interface (Fig. 5f). Its methyl side chain was speculated to enable
lipids with small headgroups to enter the site. Mutating it to
the bulky leucine reduced activity by 93% consistent with a
putative gatekeeping role. (iv) Gly83 in the CL was proposed to
facilitate the helix-coil transition enabling adenine binding
(Supplementary Fig. 3). Mutating it to Pro was expected to
compromise such activity. Indeed, the Gly83Pro mutant was
virtually dead enzymatically; MDS show dynamic instability of
the CL (Supplementary Movie 2) and (v) finally, Asn72 plays a
key role in catalysis. Its side-chain amide bridges Glu69 and
Glu76 (Fig. 5c) both of which are essential. These H-bonds bridge
the two essential residues throughout the MDS. The Asn72Ala
mutant is catalytically inactive. For all intents and purposes,

so too are the Asn72Gln and Asn72Asp mutants. These data
show how important both the precise chemistry and the
architecture of this part of the binding/active site are for
catalysis. The structure-based, hypothesis-testing mutations and
others in Fig. 2b and Supplementary Table 1 lend credence to the
complex model and mechanism of kinase action.

Discussion
DgkA is the tiniest of kinases. With just 121 residues and a
trimeric constitution, three kinase catalytic sites have been
fashioned (Fig. 1). Each acts at the membrane/cytosol interface.
The rest of the protein creates binding pockets on either side that
position the reactive ends of two large substrate molecules with
dramatically different polarities in juxtaposition for reaction. The
ternary structure explains in atomic detail how the nucleotide and

a b c

d e f
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Figure 4 | Changes in the active site of the DgkA ternary complex at the beginning and end of a 100-ns MDS. (a) WT simulation of ATP based on the

ACP coordinates. There are limited differences in the binding site between the start (grey) and end (colour) of the MDS. (b) E28A mutation (red). This

principally affects the binding of the Zn2 ion. In the absence of the E28 side chain the zinc ions become purely coordinated by E76 and the ATP phosphates.

As a result, the entire zinc-ATP complex moves away from the protein, towards the cytoplasm. This, in turn, slightly alters the conformation of the CL.

(c) E76A (red). To compensate for the loss of E76, the zinc ions move towards the membrane to interact with E69. This pulls the ATP in the same direction

and, in turn, the CL is affected. (d) K94A (red). The WT residue coordinates both a-phosphate and N7 of the adenine ring of ATP. The loss of the basic

side-chain releases the adenine of ATP and the binding is lost. In WTsimulations, K94 forms a salt bridge with D80 and it is expected that the loss of this

bridge in the D80A mutant can also explain the loss of catalytic ability in this mutant. (e) GTP. The major difference in dynamics is observed in the CL,

where the loss of the N6 hydrogen bond with the backbone of E85 destabilizes purine binding and the CL. (f) ADP. The ADP molecule is expected to leave

the binding site after catalysis has taken place. A change in zinc ion coordination takes place as Zn1 now coordinates the a- and b-phosphates of ADP. This
relocates ADP closer to K94, which also coordinates both phosphates. In turn, K94 no longer interacts with the N7 position of the purine ring, which

changes conformation, priming the ADP molecule for exit. Throughout this legend, WT refers to D4-DgkA (ref. 12).
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lipid-binding sites interact with substrate molecules. The many,
contact site-docking defines a specific orientation for the
nucleotide that presumably is optimized for transphosphoryla-
tion. Particularly striking is the similarity between the binding site
architecture of this bacterial DgkA and mammalian PKA (Figs 2a
and 6), kinases that bear no resemblance at any other level of
structure. Thus, these defined points of chemical constitution

arrayed precisely in three-dimensional space have evolved
independently achieving a similar end in entirely different
protein contexts – a convincing case of convergent evolution.

DgkA’s small size shows that a functioning kinase can be built
with very little protein mass. The ternary structure points to a
minimum required for that purpose. Inspecting the complex
suggests that a pair of helices, each 3-4 turns long, connected by a
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distances 2.0–2.2Å. The second (Glu76_2) has the coordinating oxygen at some distance (3.8Å, green dashed line) from Zn2 where it may facilitate

product release. The polyphosphate and zinc are superimposed from the ternary complex on the XFEL apo-structure. (c) Side-chain amide nitrogen of

Asn72C coordinates with carboxyls of Glu69C and Glu76C, both essential residues. By weakly interacting with g-phosphate oxygens, the electrophilicity of

the g-phosphorus is elevated making it more reactive. Additionally, the amide may stabilize a transient bisubstrate by being positioned close to where the

pentavalent intermediate is likely to form between the 1-OH of MAG1 and the g-phosphate of ACP (dotted blue line). Likely interactions between MAG1

and the enzyme are indicated by dashed lines only. (d) Alternative conformations for Glu69 observed in the XFEL structure (magenta carbons)

superimposed on the DgkA ternary structure (green carbons). The first conformation (Glu69_1) is like that seen in the ternary complex and interacts with
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electron density corresponding to alternative conformers seen in the XFEL structure superposed. (f) The methyl side chain of Ala30C (red circle) is

proposed to provide room for lipid substrate and product to pass between the start of SHB and the top of H1C that define the gateway into and out of the

active site. The Ca–Ca distance from Ala30C (red circle) to Ala13B (blue circle) in asBC is 10.0Å.
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7-residue loop (Supplementary Fig. 3) might be all that is needed
to create an ATP-binding module. The ternary structure should
serve as a template for rational protein and enzyme design,
optimizable for solubility, stability, specificity and catalytic
efficiency.

Kinetic studies suggest that DgkA functions with a moderate
level of heteroallostery1. Thus, the binding of one substrate
influences (in this case positively) that of its co-substrate. In a
multimer like DgkA, it is possible for heteroallostery to come
about through inter-subunit signalling. The fact that any given
active site is a composite, with components from at least two
subunits, suggests a way for the substrate-bound status of one site
to be relayed to another; the SH is an obvious means for inter-
subunit information transmission. In this way, the enzyme could
present simultaneously three active sites in distinct states. We find
some evidence for this in the ternary structure where only one of
the three active sites is occupied by ACP. Further, two of the
sites in the CL region, which clamps onto the nucleotide base,
are profoundly different (Supplementary Fig. 3). Neither CL is
involved in crystal contacts. Presumably therefore both are
physiologically relevant. We propose that the three sites in DgkA
are in different states at any given time during catalysis. However,
it is possible to model a symmetrical DgkA trimer that is stable in
MDS, indicating that the enzyme may adopt a symmetrical
configuration. This does not imply that all three sites are
catalytically active at the same time. Additional mechanistic and
structure work is required to evaluate allosteric coupling within
the enzyme.

As a trimer situated with half its bulk in the membrane and
half in the cytosol, DgkA has features that make it a good
biocatalyst. Its three active sites are arranged around the enzyme’s
periphery (Fig. 1b) opening to the cytosol and the membrane for
easy access and egress of substrates and products. This naturally
raises the probability of productive encounters between substrates
and binding sites, thus elevating the reaction rate compared
to a hypothetical solitary active site. Conformational changes,
where needed for turnover, would appear to be relatively minor
involving small segments such as the CL for nucleotide and the
SH for lipid and nucleotide binding. This should ensure efficient
substrate loading and product release. The reduction in
dimensionality, as a result of lipid substrate and enzyme

confinement to a two-dimensional membrane, increases overall
efficiency of delivery. The amphiphilic nature of the lipid and of
the membrane in which it and the kinase reside, ensure
the spontaneous and proper alignment of substrate in the
lipid-binding site for reaction. These features of trimeric DgkA
undoubtedly contribute to making it an efficient biocatalyst,
described previously as an evolutionarily optimized integral
membrane enzyme.

Methods
Molecular biology and protein production. All but two of the DgkA mutants
were generated by PCR-based site-directed mutagenesis using the plasmid
pTrcHisB-DgkA-WT (ref. 14) as the template. In the case of E34D and E34A,
constructs with the desired mutation could not be produced after several rounds of
mutagenesis trials. Instead, the corresponding genes were synthesized chemically
(Genescript). All mutations were confirmed by DNA sequencing (MWG Biotech).
Detailed purification procedures are described in ref. 14. Briefly, E. coli WH1061
cells carrying DgkA plasmids and grown in Luria-Bertani broth were induced at an
optical density of 0.6 for 3 h at 37 �C with 1mM IPTG. All subsequent steps were
carried out at 4 �C unless otherwise specified. For crystallization, cells from 1 l of
culture were lyased by sonication in buffer containing 0.2mM TCEP, 0.3M NaCl,
0.2mgml� 1 lysozyme, 50mgml� 1 DNAase, 10mM BHT, 1mM PMSF, 0.2mM
EDTA, 5mM MgCl2 and 75mM Tris/HCl pH 7.8. Empigen BB was added to the
cell lysate at 3.3% (w/v) to solubilize DgkA for 1 h. Unsolublized material was
removed by centrifugation at 9,000g for 10min. The supernatant containing
N-terminally His-tagged DgkA was allowed to bind to 4ml of Ni-NTA resin for
1 h. The resin was packed in a gravity column, which was washed with 3% (w/v)
Empigen BB, 10mM imidazole in Buffer A (0.3 M NaCl, 0.2mM TCEP, 40mM
HEPES pH 7.5) and 1.5% (w/v) Empigen BB, 40mM imidazole in Buffer A. The
detergent Empigen was then exchanged to n-decyl-b-D-maltopyranoside (DM) by
washing the column with 12 column volumes of buffer containing 0.25% (w/v)
DM, 50mM LiCl, 0.2mM TCEP, 20mM HEPES pH 7.5. Protein was eluted with
0.25M imidazole in buffer containing 0.5% (w/v) DM, 1mM TECP, 50mM LiCl
and 10mM HEPES pH 7.5. Pooled fractions were concentrated and run through a
size-exclusion chromatography with a Superdex 200 16/600 column in buffer
containing 0.25% (w/v) DM, 1mM TCEP, 0.1 M NaCl and 10mM Tris HCl pH
7.5. Fractions corresponding to the central peak were pooled. Protein was
concentrated to 12mgml� 1, flashed frozen in liquid nitrogen as 11 ml aliquots and
stored at � 80 �C until use. For functional assays, protein was purified from 0.1 l of
cell culture, omitting the size-exclusion chromatography step. Size-exclusion
chromatography had no effect on specific activity.

Enzyme assays. In meso measurements of WT and mutant DgkA kinase activity
were carried out as follows15. DgkA was reconstituted into LCP by mixing the
protein solution with a 1.5-fold volume of monoolein. Five microliters of LCP was
dispensed into each well of a 96-well plate. The coupled enzyme assay reaction was
initiated by adding 200ml of Assay Mix (20mM ATP, 0.1mM EDTA, 0.1mM
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EGTA, 55mM magnesium acetate, 1mM phosphoenolpyruvic acid, 0.2mM
dithiothreitol, 50mM LiCl, 0.4mM NADH, 20Uml� 1 of pyruvate kinase and
lactate dehydrogenase, and 75mM PIPES pH 6.9) pre-warmed to 30 �C. The
decrease in A340, caused by the oxidation of NADH which is coupled to ATP–ADP
conversion, was recorded every 6–10 s over a period of 1 h. For WT enzyme and
fully functional constructs, the protein concentration used for reconstitution into
the mesophase was 0.066mgml� 1. For mutants with oB70% of WT activity,
protein concentration was adjusted to 0.1� 5mgml� 1 to increase measurement
sensitivity.

Crystallization. In meso crystallization of the apo form of D4-DgkA for
synchrotron radiation data collection was carried out using an in meso robot15.
The 96-well glass sandwich crystallization plates were incubated at 4 �C for crystal
growth15. The precipitant solution contained 7–9% (v/v) 2-methyl-2,4-pentanediol
(MPD), 0.1M NaCl, 0.1M KNO3, 0.1M Na3C6H5O7 (sodium citrate) pH 5.6 for
9.9 MAG, and 4—7% (v/v) MPD, 0.1M NaCl, 0.06M Mg(CH3COO)2 (magnesium
acetate), 0.05M Na3C6H5O7 for 7.9 MAG. Crystals were harvested and snap cooled
in liquid nitrogen26.

To produce crystals of DgkA in complex with an ATP analogue, extensive
screening was performed that involved exploring protein constructs, crystal forms,
host MAGs, analogues, crystallization precipitants and temperature. Trials with
D4-DgkA in 9.9 MAG with zinc-ACP at 4 �C eventually provided crystals and a
structure at 2.70Å resolution. Crystals were soaked directly in glass sandwich plates
for 2 h at 4 �C using precipitant solution (7–10% (v/v) MPD, 0.1M NaCl, 0.1M
KNO3, 0.1M Na3C6H5O7 pH 5.6) supplemented with 60mM Zn(CH3COO)2 and
10mM ACP. Harvesting was performed, as noted above.

For measurements with the XFEL, crystallization was carried out at 20 �C in
coupled micro-syringes using 7.9 MAG as host lipid27–29. The precipitant solution
contained 0.2% (v/v) MPD, 0.1M NaCl, 0.05M Na3C6H5O7 pH 5.6. Microcrystals
were identified by bright-field and polarized light microscopy, SONICC and
tryptophan fluorescence at the Linac Coherent Light Source (LCLS). Crystal-laden
mesophase was transferred to an LCP injector and extruded for data collection into
an evacuated chamber at 20 �C, as described below.

Synchrotron data collection and processing. Synchrotron diffraction data were
collected at beamline 23-ID-B, Advanced Photon Source (USA), I24, Diamond
Light Source (UK) and PXII, Swiss Light Source (SLS, Switzerland) at 100 K. At the
Advanced Photon Source, data were collected with a 1� oscillation and a 1-s
exposure per frame, a collimated beam size of 10 mm, and a sample-to-detector
distance of 350-500mm, with a MAR 300 CCD detector using 1.033 Å X-rays.
At the Diamond Light Source, data were collected with a 0.2� oscillation and a 0.2-s
exposure per frame, a microfocus beam size of 10 mm and a sample-to-detector
distance of 500–650mm, with a Pilatus 6M detector using 0.978Å wavelength
X-rays. At the SLS, data were collected with a 0.1 oscillation and 0.1-s exposure
per frame, a collimated beam size of 10� 15mm2 and a sample-to-detector distance
of 450–600mm, with a Pilatus 6M detector using 1.033 Å X-rays.

Synchrotron-derived diffraction data were reduced with xia2 (ref. 30) using
XDS (ref. 31) and XSCALE (Table 1). Optimum data wedges were identified by
data quality and isomorphous unit cell parameters. Complete data sets for
D4-99MAG-ACP and D7-79MAG (Table 1) were obtained by merging data
collected from 4 and 6 crystals, respectively. A single crystal was used for the
anomalous data collected at the zinc edge (Zn-edge D4-99MAG-ACP in Table 1).

XFEL data collection and processing. XFEL data were collected using the CXI
instrument32 at the LCLS at SLAC National Accelerator Laboratory27,33. The LCLS
was operated at a wavelength of 1.302Å (9.5 keV) delivering X-ray pulses of 50 fs
pulse duration and with 8� 1011 photons per pulse focused into a spot size of
B1.5 mm� 1.5 mm2 using a pair of Kirkpatrick–Baez mirrors. Needle-shaped
protein microcrystals ranging in length from 10 to 40 mm dispersed in the LCP
were injected into the focus region at 0.17 ml min� 1 using a continuously flowing
LCP injector with a nozzle capillary diameter of 50 mm (ref. 27). Single-shot
diffraction patterns of randomly oriented crystals were recorded at a rate of 7,200
patterns per minute (120Hz) using the Cornell-SLAC hybrid Pixel Array Detector
(CSPAD) detector34. The sample-to-detector distance of B122mm corresponded to a
maximum obtainable resolution of 2.0Å at 1.302Å wavelength. Data collection
required 4.5 h of beamtime and used 42ml mesophase corresponding to 220mg protein.

A total of 1,987,632 frames were collected, of which 180,031 (9.1%) were
identified as ‘hits’ having crystal diffraction by the software package Cheetah35,
from which 140,440 (78.0%) could be indexed and integrated using CrystFEL
(ref. 36). The location of individual sensors on the CSPAD detector was determined
to better than one pixel error by comparison of predicted and observed Bragg peak
locations, and was key to obtaining a high indexing rate and data quality. Reflection
intensities from all indexed diffraction patterns were integrated without applying a
per-pattern resolution cut-off and merged in Point Group mmm using CrystFEL to
produce one set of reflection intensities for structure determination. XFEL data
could be evaluated to 2.15Å, with a CC* of 0.998 (0.30 in the highest resolution
shell) and I/sigma of 19.0 (0.33 in the highest resolution shell). Selection of the
highest resolution shell (2.18 Å) was based on CC* and on improvements in
Rwork/Rfree values, as well as map quality on stepwise screening higher resolution
limits (2.13, 2.15, 2.18, 2.2 and 2.4 Å) during refinement37.

Structure solution, model building and refinement. Structures were solved by
molecular replacement (MR) using published models (PDB ID: 3ZE3 and 3ZE4)
with Phaser38. Coot39 and Phenix40 were used for manual building and refinement,
respectively. Ligands were built based on feature enhanced maps41 and composite
omit 2Fo-Fc maps. Lang et al.42 reported that the noise level in 2Fo-Fc maps is
generally over estimated. Accordingly, the 2Fo-Fc map contoured at 0.7 s, together
with the strong electron density in the chain region of other DgkA structures
(Supplementary Fig. 4), informed building the acyl chain of MAG1 in the asBC
active site. The position of the two zinc ions were fixed during refinement based on
an anomalous difference map (Fig. 1e) generated from X-ray diffraction data
collected at the zinc edge (1.28238Å, Table 1). The feature enhanced map (FEM)41

of the Zn-ACP moiety was calculated as follows. MR was performed with a DgkA
trimer crystallized in the absence of nucleotide and an FEM was calculated directly
from the MR solution using Phenix without adding nucleotide to the model. For
the MAG1, the FEM was calculated as for the Zn-ACP but with MAG1 in place.
Figures were prepared using PyMol.

Molecular dynamics simulations. All MDS were performed using GROMACS
v5.0 (ref. 43). Initial Coarse Grained (CG) MD simulations using the Martini
2.2 force field were run for 1 ms to permit the assembly and equilibration of a
dipalmitoylphosphatidylglycerol (DPPG): dipalmitoylphosphatidylethanolamine
(DPPE; 1:3 mole ratio) bilayer around DgkA (ref. 44). The end-snapshot of the CG
simulations were then converted to atomic detail with the crystal structure aligned
with the CG protein within the assembled lipid bilayer45. The systems were then
equilibrated for 1 ns with the protein restrained before 100 ns of unrestrained
atomistic MD using the Gromos53a6 force field46. In almost all cases, ATP, Zn2þ

and MAG were included. In one instance, GTP was included instead of ATP. In a
second case, ADP and lyso-phosphatidic acid were included in place of ATP and
MAG. Parameters for catalytic intermediates were also designed, with the
associated coordinates simulated in the complex. Systems were neutralized with a
150-mM concentration of NaCl. In silico mutagenesis was performed using PyMol.

Density functional theory. Modelling chemical reactions is not possible with
(classical) MDS. Accordingly, using ab initio-based DFT molecular-simulation
techniques to probe putative reaction paths and energetics is of relevance and help
to enzyme reaction mechanism studies. Gaussian 09 software B3LYP/6-31G(d,p)
simulations were performed on MDS configurations like Fig. 3c, featuring intimate
MAG1 contacts; other configurations were less energetically plausible. MM
(AMBER), ONIOM-QM/MM (ref. 47) and DFT geometry-optimization led to
retaining zinc atoms and residues within B7Å (244 atoms) and B8Å (365 atoms)
of MAG1, for MAG1’s reliable energetic and geometric interactions.

Examining carefully MDS-sampled, ‘cut-down’ configurations of the ternary
complex’s active site similar to Fig. 3c, the energetics of possible interactions of
1-OH with neighbouring protein residues were studied. Both geometry
optimization and systematic movement of the lipid substrate’s 1-OH proton
towards nearby residues were used to examine the change in the system’s energy
along this proton abstraction path. In DFT, albeit approximate, the electron
probability density around nuclei is determined, so geometry optimization can
‘relax’ and move the nuclear coordinates to lower the system’s energy to a (local or
global) minimum. Relaxation of particular configurations could include 1-OH
proton transfer, or rearrangement of bonds, or the formation of a (near-) covalent
bond between an 1-O oxyanion (or even 1-OH with proton intact) and the
g-phosphorus atom to form a pentavalent intermediate structure (Supplementary
Fig. 6). A key point regarding these possible events is their energetic (and kinetic)
‘accessibility’, especially in relation to background thermal energy BRT. At room
temperature (RT) is around 0.6 kcalmol� 1. Accordingly, such reaction events
accessible for routine observation during geometry optimization would typically
have energy barriers of B2–3 kcalmol� 1, or less. Indeed, the connection between
reaction-energy barriers and approximate rates is well-established in chemical
kinetics. On this basis, we found that the only likely interaction with protein
residues for reaction of 1-OH was with Glu69, featuring a prominent hydrogen
bond with the proton in 1-OH pointing directly to Glu69. In some cases, geometry
optimization entailed the direct transfer of the proton to Glu69, suggesting an
energy barrier ofB2–3 kcalmol� 1, or less. The relative potential-energy profile for
this is shown in Supplementary Fig. 8b, where the ‘kink’ in slope denotes the
rupture of the O–H covalent bond prior to formation of the bond with Glu69.
Because movement along this direct path (cf. Supplementary Fig. 8a) does not
necessarily follow a minimum-energy path across the potential-energy landscape
(akin to taking an ‘as-the-crow-flies’ route through a valley, rather than following a
slightly meandering river), the B5 kcalmol� 1 barrier is an overestimate, and
direct transfer in structure relaxation suggests the actual barrier is lower (see
above). The sharply ‘downhill’ energetic nature of proton transfer indicates an
approach towards spontaneity for this event. This transfer is facilitated greatly by
the prominent hydrogen bond’s strong electrostatic interaction, especially given the
high charge-to-mass ratio of the proton.

Optimization of the alkoxide form led to the formation of a somewhat strained,
imperfect covalent bond for the resultant (1-O) oxyanion (sans proton) with the
g-phosphorus atom, not unusual for a pentavalent intermediate, suggesting
reasonable kinetic accessibility with a B2–3 kcalmol� 1 barrier. However, further
structure relaxation did not suggest any rupture (or meaningful stretch/strain) of
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the bridging g-P–O bond. Extending systematically this covalent bond until
breakage, the relative potential-energy profile (Supplementary Fig. 8b) suggests a
reaction-energy barrier of B15 kcal mol� 1. Unlike the hydrogen bond in proton
transfer, there is no appreciable local electrostatic interaction in this bond. The
much larger mass of P and O atoms and inertia of the MAG1 and to-be-formed
ADP moieties compounds this, altering the character of this potential-energy
profile. With a large positive barrier to be crossed, it is much less kinetically
favourable. Here, the substantial positive-energy ‘hill’ shows clearly the
unfavourable nature of extending the bond from a local minimum in the
immediate vicinity of the ‘reactant’ state, hindered by less electrostatic interaction,
until rupture beyond 0.5–0.6 Å. This is somewhat consistent with previous
computational estimates of 26.7 kcalmol� 1 (based on potential-energy
differences), albeit for cleavage of ATP (only) in explicit water, and not in the
current protein milieu48. Such ‘as-the-crow-flies’ overestimates of energy barriers
vis-à-vis relatively (but not completely) ‘straight’ paths (akin to those shown in
Supplementary Fig. 8a and traversed in b) is around double. This would suggest a
g-P–O cleavage energy barrier of B8–10 kcalmol� 1. This substantially larger
value compared with proton abstraction indicates that phosphate cleavage is
rate-limiting. This is consistent with the proposed stabilization by Asn72 and/or
Arg9 of the pentavalent intermediate (Fig. 2a), and MDS evidence pointing to
Arg9-mediated stabilization.
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