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Normal thyroid function is essential for health, but its genetic architecture remains poorly

understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we

analyse whole-genome sequence data from the UK10K project (N¼ 2,287). Using additional

whole-genome sequence and deeply imputed data sets, we report meta-analysis results for

common variants (MAFZ1%) associated with TSH and FT4 (N¼ 16,335). For TSH, we identify a

novel variant in SYN2 (MAF¼ 23.5%, P¼6.15� 10�9) and a new independent variant in PDE8B

(MAF¼ 10.4%, P¼ 5.94� 10� 14). For FT4, we report a low-frequency variant near B4GALT6/

SLC25A52 (MAF¼ 3.2%, P¼ 1.27� 10� 9) tagging a rare TTR variant (MAF¼0.4%, P¼ 2.14

� 10� 11). All common variants explain Z20% of the variance in TSH and FT4. Analysis of rare

variants (MAFo1%) using sequence kernel association testing reveals a novel association with

FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence

association studies identifies novel variants associated with thyroid function.
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T
hyroid hormones have fundamental but diverse
physiological roles in vertebrate physiology, ranging from
induction of metamorphosis in amphibians to photo-

periodic regulation of seasonal breeding in birds1. In humans,
they are essential for adult health and childhood development2,3

and levothyroxine is one of the commonest drugs prescribed
worldwide. Clinically, thyroid function is assessed by measuring
circulating concentrations of free thyroxine (FT4) and the
pituitary hormone thyrotropin (TSH); the complex inverse
relationship between them renders TSH the more sensitive
marker of thyroid status4. Even small differences in TSH and FT4,
within the normal population reference range, are associated with
a wide range of clinical parameters, including blood pressure,
lipids and cardiovascular mortality, as well as obesity, bone
mineral density and lifetime cancer risk5.

Twin and family studies estimate the heritability of TSH and
FT4 as up to 65%6. Genome-wide association studies (GWAS)
identified common variants associated with TSH and FT47–9; in a
recent HapMap-based meta-analysis10, we identified 19 loci
associated with TSH and 4 with FT4. However, these accounted
for only 5.6% of the variance in TSH and 2.3% in FT4. Therefore,
most of the heritability of these important traits remains
unexplained.

The unidentified genetic component of variance might be
explained by common variants poorly tagged by markers assessed
in previous studies, or those with small effects. However, rarer
variants within the minor allele frequency (MAF) spectrum might
also account for a substantial proportion of the missing
heritability as has been proposed for many polygenic traits11.
These variants, although individually rare (MAFo1%), are
collectively frequent, and while their effects may be insufficient
to produce clear familial aggregation, effect sizes for individual
variants are potentially much greater than those observed for
common variants. In addition, a greater understanding of the
relative proportion of thyroid function explained by common
variants is now possible with the availability of whole-genome
sequencing (WGS) and this is essential to refine future research
and analysis strategies when appraising the genetic architecture of
thyroid function.

In this study, the first to utilize WGS to examine the genetic
architecture of TSH and FT4, we perform single-point association
analysis in two discovery cohorts in the UK10K project with
WGS data available and a meta-analysis using genome wide
association data (GWAS) with deep imputation from five
additional data sets. We report three new loci associated with
thyroid function in healthy individuals, undertake quantitative
trait loci and DNA methylation analyses to further study these
relationships and undertake genome-wide complex trait analyses
(GCTA)12 to assess the contributions of common variants
(MAFZ1%) to variance in thyroid function. We also explore
whether there is a shared polygenic basis between TSH and FT4.
In individuals with WGS data, we perform sequence kernel-based
association testing (SKAT) analysis to identify regions of the
genome where rare variants have the strongest association with
thyroid function and identify a novel locus associated with FT4.
The results demonstrate that WGS-based analyses can identify
rare functional variants and associations derived from rare
aggregates. Larger meta-analyses of studies with WGS data are
now required to identify additional common and rare variants,
which may explain the missing heritability of thyroid function.

Results
Single-point association analysis. In the discovery study, using a
meta-analysis of WGS data from the Avon Longitudinal Study of
Parents and Children (ALSPAC) and TwinsUK cohorts

(N¼ 2,287) analysing up to 8,816,734 markers (Supplementary
Tables 1 and 2; Supplementary Methods), we find associations
at two previously described loci for TSH. These are
NR3C2 (rs11728154; MAF¼ 21.0%, B¼ 0.21, s.e.¼ 0.037,
P¼ 8.21� 10� 9; r2¼ 0.99 with the previously reported
rs10028213) and FOXE1 (rs1877431; MAF¼ 39.5%, B¼ � 0.19,
s.e.¼ 0.030, P¼ 2.29� 10� 10; r2¼ 0.99 with the previously
reported rs965513). We find one borderline signal (between
P¼ 5.0� 10� 08 and P¼ 1.17� 10� 08) at a novel locus
FAM222A (rs11067829; MAF¼ 18.3%, B¼ 0.210, s.e.¼ 0.038,
P¼ 3.73� 10� 8; Supplementary Figs 1a and 2; Supplementary
Table 3). No variants show genome-wide significant association
for FT4 (Supplementary Figs 1a and 3).

In a meta-analysis of the discovery cohorts and five additional
cohorts, we find associations for 13 SNPs at 11 loci for TSH
(N¼ 16,335) of which 11 loci have been identified previously
and 4 SNPs at 4 loci for FT4 (N¼ 13,651) of which 3
have been identified previously (Table 1; Figs 1a–c,2a,b and 3;
Supplementary Figs 1b and 3–6).

To determine whether our identified associations at established
loci represented previous association signals, we analysed
the linkage disequilibrium (LD) between the strongest
associated variants from this study and those from our
previous study10 (Supplementary Table 4). The top variants
from loci in both studies were in strong LD (r240.6), apart
from MBIP and FOXE1, although these were in strong
LD with variants previously associated with TSH by others8.
Two SNPs associated with TSH in our study are novel, one at
SYN2 (rs310763; MAF¼ 23.5%, B¼ 0.082, s.e.¼ 0.014,
P¼ 6.15� 10� 9; Fig. 1a–c). SYN2 is a member of a family of
neuron-specific phosphoproteins involved in the regulation of
neurotransmitter release with expression in the pituitary and
hypothalamus (http://biogps.org/#goto=genereport&id=6854).
We also identify one novel variant at PDE8B (MAF¼ 10.4%,
B¼ � 0.145, s.e.¼ 0.019, P¼ 5.94� 10� 14) in linkage
equilibrium (r2¼ 0.002, D0 ¼ 0.17) with the previously described
variant rs6885099 (ref. 10) and independent from our top SNP
rs2046045 (P¼ 1.93� 10� 11) after conditional analysis. In the
overall meta-analysis, we are unable to replicate the association
between FAM222A and TSH in the discovery analysis (B¼ 0.014,
s.e.¼ 0.015, P¼ 0.378); however, we observe evidence of
heterogeneity between cohorts (test for heterogeneity
P¼ 4.70� 10� 6; Supplementary Table 5), so potentially this
locus may find support in future WGS studies.

In our meta-analysis, we also identify four SNPs associated
with FT4, three at previously established loci (DIO1, LHX3 and
AADAT; Table 1; Fig. 3; Supplementary Figs 1b, 4e and 6;
Supplementary Table 4). We find a novel uncommon variant at
B4GALT6/SLC25A52 associated with FT4 (rs113107469;
MAF¼ 3.20%, B¼ 0.225, s.e.¼ 0.037, P¼ 1.27� 10� 9; Fig. 2a).
B4GALT6 is in the ceramide metabolic pathway, which inhibits
cyclic AMP production in TSH-stimulated cells. However, the
B4GALT6 signal (rs113107469) is in weak LD (r2o0.1, D0 ¼ 0.66)
with the Thr139Met substitution (rs28933981; MAF¼ 0.4%) and
it may therefore be a marker for this functional change in TTR.
The Thr139Met substitution was associated with FT4 levels in our
single-point meta-analysis (P¼ 2.14� 10� 11), however, was not
originally observed as the MAF was lower than our 1% threshold.
Conditional analysis of the TTR region using rs28933981 as the
conditioning marker in the ALSPAC WGS cohort reveals no
evidence of association between rs113107469 in B4GALT6 and
FT4 (P¼ 0.124; Fig. 2b). Analysis using direct genotyping in the
ALSPAC WGS and replication cohorts confirms the effect of the
Thr139Met substitution on FT4 levels. Here, 0.79% of children
were heterozygous for the Thr139Met substitution, which is
positively associated with FT4 (B¼ 1.70, s.e.¼ 0.17, 95% CI 1.37,
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2.03, P¼ 3.89� 10� 24). In the ALSPAC replication data set,
rs113107469 in B4GALT6 was also positively associated with FT4
(P¼ 0.0002); however, when conditioned on the Thr139Met
substitution there was no longer any evidence of association
(P¼ 0.20). The Thr139Met substitution also appears to be
functional: this mutation has increased protein stability compared
with wild-type transthyretin (TTR)13,14 and tighter binding of
thyroxine14, resulting in a twofold increase in thyroxine-binding
affinity15,16. Further details of the likely genes related to all our
observed independent novel signals are shown in Supplementary
Table 6.

Expression quantitative trait locus analysis. Expression quanti-
tative trait locus (eQTL) analysis17,18 reveals that our SYN2
variant modulates SYN2 transcription in adipose, skin and whole-
blood cells, but not lymphoblastoid cell lines (Supplementary
Table 7). Furthermore, bioinformatics analysis suggests that the
C-allele at rs310763 attenuates an EGR1 regulatory motif19. EGR1
is expressed in thyrocytes, regulates pituitary development20,21

and may influence thyroid status via LHX3 promotor activity20.
Several other variants in the SYN2 gene region are in strong
LD (r240.8) with rs310763, including the non-synonymous
coding variant rs794999. Although predicted to be benign
(PolyPhen-2 score¼ 0.002 (ref. 22)), rs794999 is located in a
DNase hypersensitivity cluster23, influences four predicted
regulatory motifs19 and appears to be under evolutionary
constraint24,25. SNPs identified in our study, or those in LD,
also showed strong eQTL associations with PDE8B
(P¼ 8.69� 10� 27), FOXE1 (P¼ 9.10� 10� 54) and AADAT
(P¼ 7.86� 10� 9) gene expressions (Supplementary Table 7).

DNA methylation analysis. To further explore cis-regulatory
effects of variants identified in our study, we carried out analysis
of DNA methylation profiles in whole-blood samples in 279
individuals from the TwinsUK cohort. We find evidence for a
methylation quantitative trait locus (meQTL) at the novel TSH-

associated variant rs2928167 in PDE8B (P¼ 4.38� 10� 7;
Supplementary Table 8), which are also eQTLs in multiple tissues
(Supplementary Table 7). Recently, meQTL effects using the same
probe (cg16418800) in adipose tissue also identified a peak signal
at rs2359775 (P¼ 6� 10� 15), which is in LD with rs2928167
(r2¼ 0.5). We find that variants in ABO (P¼ 2.02� 10� 23)
and AADAT (P¼ 1.80� 10� 8) also show strong evidence for
cis-meQTL effects (Supplementary Table 8). In additional
analyses in 745 ALSPAC children, we find strong meQTL asso-
ciations for rs2359775 in PDE8B (P¼ 3.03� 10� 28) and variants
in ABO (P¼ 1.01� 10� 101) and AADAT (P¼ 4.18� 10� 34)
(Supplementary Table 8).

SKAT analysis. Tests of the association between aggregates of
rare variants (MAFo1%) in the WGS cohorts were restricted to
genes relevant to thyroid function. We find no evidence of
association from SKAT analyses with TSH, however, for FT4 we
identify one SKAT bin with multiple-testing-corrected evidence
for association (Pr1.55� 10� 5) in NRG1 (P¼ 2.53� 10� 6;
Fig. 4; Supplementary Table 9). NRG1 is a glycoprotein that
interacts with the NEU/ERBB2 receptor tyrosine kinase, and is
critical in organ development.

GCTA and polygenic score analysis. SNPs were thinned to a set
of 2,203,581 approximately independent SNPs with an LD
threshold of r240.2, a window size of 5,000 SNPs and step of
1,000 SNPs. A genomic relationship matrix was then generated
for unrelated individuals. We fitted linear mixed-effect models
and estimate that all assessed common SNPs (MAF41%) explain
24% (95% CI 19, 29) and 20% (95% CI 14, 26) of TSH and FT4
variance, respectively (Pr0.0001; Supplementary Table 10).
Polygenic score analyses21 based on SNPs with P values under a
fixed threshold do not detect evidence of a polygenic signal for
TSH or FT4, nor of a shared polygenic basis between thyroid
function and key metabolic outcomes. However, a genetic score
based on 67 SNPs previously associated with thyroid function in

Table 1 | Independent SNPs with MAFZ1% associated with serum TSH and FT4 levels in the overall meta-analysis.

Gene SNP Chromosome Position A1/A2 Freq A1 Effect Std Err N P Het P

TSH
CAPZB rs12410532 1 19845279 T/C 0.164 �0.090 0.016 16,332 9.41� 10� 9 0.003
IGFBP2 rs7568039 2 217612321 A/C 0.250 �0.122 0.014 16,335 2.11� 10� 19 0.370
SYN2 rs310763 3 12230704 T/C 0.235 0.083 0.014 16,334 6.15� 10�9 0.252
NR3C2 rs28435578 4 149646538 C/T 0.227 �0.166 0.014 16,333 4.59� 10� 32 0.109
PDE8B rs2046045 5 76535811 G/T 0.414 0.142 0.012 16,334 4.05� 10� 33 0.653
PDE8B rs2928167 5 76477820 G/A 0.104 �0.145 0.019 16334 5.94� 10� 14 0.994
VEGFA rs6923866 6 43901184 C/T 0.280 �0.102 0.013 16,333 7.55� 10� 15 0.646
VEGFA rs2396084 6 43804825 A/G 0.287 �0.096 0.013 16,333 4.33� 10� 13 0.422
PDE10A rs3008034 6 166043862 C/T 0.312 �0.131 0.012 16,335 4.68� 10� 26 0.084
FOXE1 rs112817873 9 100548934 T/A 0.323 �0.140 0.015 11,544 6.15� 10� 20 2.02� 10� 6

ABO rs116552240 9 136149098 A/T 0.239 0.121 0.016 14,047 1.92� 10� 14 4.11� 10�4

MBIP rs116909374 14 36738361 T/C 0.043 �0.208 0.032 15,037 4.69� 10� 11 0.179
MAF rs17767742 16 79740541 G/C 0.354 �0.113 0.012 16,335 5.64� 10� 20 0.447

FT4
DIO1 rs2235544 1 54375570 A/C 0.499 0.154 0.013 13,650 5.23� 10� 34 0.084
AADAT rs7694879 4 170969799 T/C 0.095 0.137 0.022 13,650 4.15� 10� 10 0.168
LHX3 rs11103377 9 139097135 G/A 0.496 0.087 0.013 13,651 1.44� 10� 11 0.735
B4GALT6 rs113107469 18 29306737 T/C 0.032 0.223 0.037 13,649 1.27� 10� 9 0.574

FT4, free thyroxine; MAF, minor allele frequency; SNP, single nucleotide polymorphism; TSH, thyrotropin.
Table shows the association results for SNPs that reached genome-wide level significance in the final meta-analysis. For each SNP, the best candidate gene is showed, as well as its genomic position, the
effect allele (A1), the other allele (A2), the combined frequency of A1 across studies (Freq A1) the effect size (beta—change in standardized thyroid measure by allele) and its standard error (Std Err), the
P value for association (P), the number of samples analysed (N) and the P values for heterogeneity of effects across the cohorts used in the meta-analysis (Het P). Entries in bold reflect novel identified
SNPs.
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Figure 1 | Regional and genome-wide association plots for TSH. (a) Regional association plot showing genome-wide significant locus for serum TSH at the

SYN2, TIMP4 gene region. Inset is in vitro expression QTL data for the lead SNP rs310763 in adipose cells (A), lymphoblastoid cell lines (L), skin cells (S) and

whole blood (W). Dotted line denotes genome-wide significance threshold. (b) Regional association plot after conditional analysis on rs2046045 in PDE8B

showing our novel association with TSH at rs2928167 in PDE8B remained genome-wide significant. (c) Annotated Manhattan plot from the overall analysis for

serum TSH levels. SNPs (MAF41%) are plotted on the x axis according to their position on each chromosome against association with TSH on the y axis

(shown as � log10 (P value)). The loci are regarded as genome-wide significant at Po5� 10�8. Variants with 1%oMAFo5% are shown as open diamond

symbols. Common SNPs (MAF45%) are shown as solid circles with those present in Hapmap II reference panels in grey and those derived from WGS or deeply

imputed using WGS and 1000 genomes reference panels in blue. SNPs shown as a red asterisk represent novel genome-wide significant findings.
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GWAS8,10,26 shows strong evidence of association with TSH
(P¼ 7.9� 10� 20) and FT4 (P¼ 2.7� 10� 4) and we observe
evidence of shared genetic pathways with TSH associated with the
FT4 gene score (P¼ 7.0� 10� 4). These 67 SNPs explain 7.1%
(95% CI 5.2, 9.0) of the variance in TSH and 1.9% (95% CI 1.1,
3.0) of the variance in FT4. Taken together, this suggests that
many loci underlying thyroid function remain unknown.

Chemogenomic analysis. We undertook a database analysis of
differential gene expression in cultured cells in response to hor-
mone stimulation. We find SYN2 (rank 64 of 22283 (HL60 cells))
rates highest among the genes studied in the experiment, pro-
viding strong support for the role of this newly discovered locus
in thyroid metabolism. Two other genes, NRG1 and CAPZB, also
show evidence of levothyroxine responsiveness in at least one cell
line27 on the basis of a genome-wide differential expression and
rank in the top 5th percentile (Supplementary Table 11). Publicly

available data on altered SYN2 expression in brain, limb and tail
from control and levothyroxine-treated Xenopus laevis during
metamorphosis also provide evidence for the relevance of SYN2
in thyroid function28.

Discussion
In this study, we demonstrate the utility of WGS data (and SNP
array data when deeply imputed to WGS reference panels) in
appraising the genetic architecture of thyroid function. Using
WGS data, we identify a rare functional variant in TTR that
appears to drive the observed association between an uncommon
novel variant near B4GALT6 and FT4, and we demonstrate a
novel association with FT4 arising from rare aggregates in NRG1.
We also show that common variants collectively account for over
20% of the variance in TSH and FT4, a substantial advance on
using only the ‘top SNPs’ from earlier GWA studies10. Taken
together, this work indicates that both common variants with
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modest effects and rare variants with larger effects might explain
a substantial proportion of the missing heritability of thyroid
function, but larger studies are required to identify these variants.
Studies including individuals with subclinical thyroid disease,
particularly those who are negative for thyroid autoantibodies,
may be particularly rewarding, as rare genetic variants with large
effect sizes may be associated with serum TSH and FT4
concentrations outside the inclusion ranges we used and
therefore would not be detected in our analyses.

Such endeavours are clinically relevant, as there has been a
dramatic increase in levothyroxine prescribing for borderline
TSH levels29. At least three loci identified in this study show
evidence of responsiveness to levothyroxine in cell line models,
underscoring that borderline TSH levels often reflect the
influence of genetic variation rather than overt autoimmune
thyroid disease, in which case thyroid hormone replacement
may not be appropriate. Our results indicate that further

investigation of TSH heterogeneity at the population level is
necessary.

Methods
Cohorts. Seven populations were used in this study. They are known as the
TwinsUK WGS cohort, the TwinsUK GWAS cohort, the ALSPAC WGS cohort,
the ALSPAC GWAS cohort, the SardiNIA cohort, the ValBorbera cohort and the
Busselton Health Study cohort. Summary statistics of each cohort and full
descriptions are given in Supplementary Methods, Supplementary Tables 1 and 2.
All human research was approved by the relevant institutional ethics committees.

WGS data generation. Low-read depth WGS was performed in the TwinsUK and
ALSPAC as part of the UK10K project. The SardiNIA cohort also had WGS data
available (see Supplementary Methods).

Statistical analysis. An inverse normal transformation was applied to each trait
within each cohort. Age, age2, gender and any other cohort-specific variables
(Supplementary Table 1) were applied as covariates. Genotype imputation was
performed for relevant cohorts using the IMPUTE30, MaCH31 or Minimac32

software packages, with poorly imputed variants excluded. See Supplementary
Table 1 for cohort-specific details.

Single-point association analysis. Association analysis within each cohort was
performed using the SNPTEST v2 (ref. 33), GEMMA (genome-wide efficient mixed
model association)34, EPACTS (efficient and parallelizable association container
toolbox) or ProbABEL35 software packages. Cohort-specific quality control filters
relating to call rate and Hardy–Weinberg equilibrium were applied (Supplementary
Table 1). In our analysis, we assessed the change in standardized thyroid measure
by allele using a MAF threshold Z1% and a genome-wide significance threshold of
P¼ 1.17� 10� 08 (ref. 36). Meta-analyses were performed using the GWAMA
(genome-wide association meta analysis) software37, which was used to perform
fixed-effect meta-analyses using estimates of the allelic effect size and s.e. Two
meta-analyses were performed for each phenotype: a meta-analysis of the two
UK10K WGS cohorts and a meta-analysis of all seven cohorts. The ValBorbera
cohort does not have FT4 phenotype data, so this cohort was not included in the
meta-analyses for this phenotype. In the meta-analyses, any variants that were
missing from 42 cohorts or with a combined MAF r1% were excluded. However,
in the discovery analyses, a MAF of 0.5% in either cohort was accepted to prevent
marginal MAF dropouts; the MAF o1% exclusion was then applied during the
meta-analysis.

Conditional analysis. A conditional analysis was performed to identify indepen-
dent association signals. Each study re-analysed significant loci using the lead SNP
identified in the primary analysis (Table 1) as the conditioning marker. In cohorts
where the lead SNP was not available, the best proxy was included (r240.8).
A meta-analysis was then performed on these conditional results, using the same
methods and filters as described above. The standard genome-wide significant cut-
off (Po5� 10� 8) was used to identify secondary associations.

Estimation of phenotypic variance explained by genetic variants. We
undertook GCTA using WGS data in the ALSPAC and TwinsUK discovery cohorts
and data from the SardiNIA and Busselton cohorts to estimate the variance
explained by all common SNPs (MAF41%) in the genome for TSH and FT4, using
the GCTA method of Yang et al.12 We fitted linear mixed-effect models to
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estimate the phenotypic variance attributable to the common SNPs (hg
2). In these

data sets, SNPs were thinned to a set of 2,203,581 approximately independent SNPs
using the –indep-pairwise option in PLINK with an LD threshold of r240.2,
window size of 5,000 SNPs and step of 1,000 SNPs. A genomic relationship matrix
was generated for unrelated individuals, namely, those with genomic correlation
o0.025. Estimates were calculated on SNPs filtered for Hardy–Weinberg
equilibrium P value Z1� 10� 6 and MAF Z0.01. The genetic and residual
variance components were estimated by the restricted maximum likelihood
(REML) procedure for different MAF thresholds and for SNPs within a 250 kb
window of known markers of thyroid function.

Expression quantitative trait loci analysis. Data for this study were available
from a large-scale genetic association study of human gene expression traits in
multiple disease-targeted tissue samples including subcutaneous fat, lympho-
blastoid cell lines and whole skin, derived from 856 monozygotic (MZ) and
dizygotic (DZ) female twins from the TwinsUK cohort, as part of the MuTHER
project18. We interrogated only lead SNPs (or proxies in LD, r240.8) using
Genevar software17. For whole-blood eQTL studies, samples were obtained from a
large population-based study38. The whole-blood eQTL results were downloaded
from the GTex Browser at the Broad Institute on 26 November 201339. We
identified alias rsIDs for significant index SNPs using JLIN software and UK10K
WGS data. Associations at Po1� 10� 3 were considered significant.

DNA methylation analysis. DNA methylation profiles were obtained in whole-
blood samples from 279 MZ and DZ twins from the TwinsUK cohort using the
Illumina Infinium HumanMethylation450 BeadChip. Illumina beta values were
quantile normalized to a standard normal distribution and corrected for chip, order
of the sample on the chip, bisulfite-converted DNA concentration and age. The
resulting values were used for meQTL analysis, which was performed separately in
two samples, first in 149 unrelated individuals from the TwinsUK WGS sample and
second in 130 individuals with deeply imputed data from the TwinsUK GWAS
sample. MeQTL analysis was performed for each sample in PLINK by fitting an
additive model and meta-analysis across the two samples was performed in
GWAMA, where we considered results without strong evidence for heterogeneity
(Cochran’s Q P40.05 and I2o0.7). We analysed genotype data at 17 sequence
variants (from Table 1), where for each variant meQTL analysis was performed
with all DNA methylation array CpG sites located within 50 kb of the variant,
resulting in 265 pair-wise tests. MeQTL results (Supplementary Table 8) are pre-
sented for variants with nominally significant associations in both the WGS and
GWAS samples less than a meta-analysis P-value of 1� 10� 04. In the PDE8B gene,
we also considered meQTL effects at the eQTL rs251429 (Supplementary Table 7)
and found nominally significant association with DNA methylation at CpG site
cg16461538 (B¼ � 0.18, s.e.¼ 0.08, P¼ 0.02). We assessed the association
between DNA methylation levels at the CpG sites identified to harbour meQTLs in
our study (Supplementary Table 8) and TSH and FT4 levels. Using the same study
design as that adopted in the meQTL analysis, we obtained no nominally sig-
nificant association between DNA methylation at the 11 CpG sites (Supplementary
Table 8) for TSH or FT4 levels. Subsequent replication of meQTL associations
observed in TwinsUK was performed in the ALSPAC cohort for which DNA
methylation profiles from whole blood were available in 745 individuals. Here, data
were rank transformed to follow the normal distribution and then regressed against
batch number. Analyses were also performed using PLINK, adjusting for age, sex,
top 10 PCs (genetic) and houseman-estimated cell counts (to account for cellular
heterogeneity).

Rare variant analysis. We conducted GWAS candidate gene (AADAT, ABO,
B4GALT6, CAPNS2, CAPZB, DIO1, DIRC3, ELK3, FBXO15, FGF7, FOXA2,
FOXE1, GLIS3, HACE1, IGFBP2, IGFBP5, INSR, ITPK1, LHX3, LOC440389/
LOC102467146, LPCAT2, MAF, MBIP, MIR1179, NETO1, NFIA, NKX2-3,
NR3C2, NRG1, PDE10A, PDE8B, PRDM11, RAPGEF5, SASH1, SIVA1,
SLC25A52, SOX9, SYN2 TMEM196, TPO, TTR, VAV3, VEGFA)-based analyses
to test for association of the combined effects of rare variants on TSH and FT4
using SKAT-O software40. This approach maximizes statistical power by applying
both burden-based and SKATs. We used the TwinsUK and ALSPAC WGS data to
examine loci with a known association with TSH and FT4. We examined all SNPs
within the candidate gene regions, including variants within 50 kb on either side of
the gene with MAF o1% down to a MAF of 0.04% (in a cohort), or 0.02%
(overall). These analyses used sequential non-overlapping windows each
containing 50 SNPs. Association at Po1.55� 10� 5 (Bonferroni corrected) was
considered significant. For the meta-analysis of rare variant data from the WGS
cohorts, we used SkatMeta41.

Polygenic score analysis. We conducted polygenic score analyses to test for
substantive polygenic effects on TSH and FT4 and for a shared polygenic basis
between thyroid traits and a range of related phenotypes including key cardio-
vascular traits, metabolic, anthropometric, endocrine and bone traits. Polygenic
scores have been used to summarize genetic effects for an ensemble of markers that
may not individually achieve significance but are relevant to regulation of the trait.
The composite score represents an overall genetic signal and can then be used to

obtain evidence of a common genetic basis for related disorders42. We ranked SNPs
by their marginal association with TSH and FT4 using the meta-analysis data set,
with TwinsUK samples excluded (leaving N¼ 13,874 for TSH and N¼ 12,561 for
FT4). SNPs were thinned to a set of 2,203,581 approximately independent SNPs
using the –indep-pairwise option in PLINK with an LD threshold of r240.2,
window size of 5,000 SNPs and step of 1,000 SNPs. On the basis of their
associations in the meta-analysis data, SNPs were selected for constructing
polygenic scores according to a range of P value thresholds. Scores were then
constructed for subjects in the TwinsUK data sets by forming the weighted sum of
trait-increasing alleles, with the weights taken as the effect size in the meta-analysis
data. To construct polygenic scores, we used 67 SNPs (rs10028213, rs10030849,
rs10032216, rs10420008, rs10499559, rs10519227, rs10799824, rs10917469,
rs10917477, rs11103377, rs113107469, rs11624776, rs116552240, rs116909374,
rs11694732, rs11726248, rs11755845, rs12410532, rs13015993, rs1537424,
rs1571583, rs17020124, rs17723470, rs17776563, rs2046045, rs2235544, rs2396084,
rs2439302, rs28435578, rs2928167, rs3008034, rs3008043, rs310763, rs334699,
rs334725, rs34269820, rs3813582, rs4704397, rs4804416, rs56738967, rs6082762,
rs61938844, rs6499766, rs6885099, rs6923866, rs6977660, rs7128207, rs7190187,
rs7240777, rs729761, rs73362602, rs73398284, rs737308, rs753760, rs7568039,
rs7694879, rs7825175, rs7860634, rs7864322, rs7913135, rs9322817, rs944289,
rs9472138, rs9497965, rs965513, rs966423 and rs9915657) that have been shown to
be associated with thyroid hormone levels8,10,26. The polygenic score was then
tested for association with relevant thyroid and other phenotypes in the TwinsUK
sample.

Chemogenomic analysis. To identify putative thyroxine-responsive genes among
the candidate loci (AADAT, ABO, B4GALT6, CAPZB, DIO1, FOXE1, IGFBP2,
LHX3, MAF, MBIP, MFAP3L, NR3C2, NRG1, PDE10A, PDE8B, QSOX2, SLC25A52,
SYN2, TTR and VEGFA), gene expression data measured in response to levothyr-
oxine treatment in a range of cell lines were retrieved from the Connectivity Map
resource27. We considered a genome-wide differential expression rank in the top
5th percentile among 22,283 probes as evidence of differential expression.

References
1. Dumont, J. et al. Ontogeny, anatomy, metabolism and physiology of the

thyroid. Thyroid Dis. Manag. Available at http://www.thyroidmanager.org/
chapter/ontogeny-anatomy-metabolismand-physiology-of-the-thyroid (2011).

2. Haddow, J. E. et al. Maternal thyroid deficiency during pregnancy and
subsequent neuropsychological development of the child. New Engl. J. Med.
341, 549–555 (1999).

3. Vanderpump, M. P. The epidemiology of thyroid disease. Br. Med. Bull. 99,
39–51 (2011).

4. Hadlow, N. C. et al. The relationship between TSH and free T4 in a large
population is complex and nonlinear and differs by age and sex. J. Clin.
Endocrinol. Metab. 98, 2936–2943 (2013).

5. Taylor, P. N., Razvi, S., Pearce, S. H. & Dayan, C. M. A review of the clinical
consequences of variation in thyroid function within the reference range.
J. Clin. Endocrinol. Metab. 98, 3562–3571 (2013).

6. Panicker, V. et al. Heritability of serum TSH, free T4 and free T3
concentrations: a study of a large UK twin cohort. Clin. Endocrinol. (Oxf.) 68,
652–659 (2008).

7. Arnaud-Lopez, L. et al. Phosphodiesterase 8B gene variants are associated with
serum TSH levels and thyroid function. Am. J. Hum. Genet. 82, 1270–1280
(2008).

8. Gudmundsson, J. et al. Discovery of common variants associated with low TSH
levels and thyroid cancer risk. Nat. Genet. 44, 319–322 (2012).

9. Panicker, V. et al. A locus on chromosome 1p36 is associated with thyrotropin
and thyroid function as identified by genome-wide association study. Am. J.
Hum. Genet. 87, 430–435 (2010).

10. Porcu, E. et al. A meta-analysis of thyroid-related traits reveals novel loci and
gender-specific differences in the regulation of thyroid function. PLoS Genet. 9,
e1003266 (2013).

11. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial
susceptibility to common diseases. Nat. Genet. 40, 695–701 (2008).

12. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-
wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

13. Alves, I. L. et al. Thyroxine binding in a TTR Met 119 kindred. J. Clin.
Endocrinol. Metab. 77, 484–488 (1993).

14. Sebastiao, M. P., Lamzin, V., Saraiva, M. J. & Damas, A. M. Transthyretin
stability as a key factor in amyloidogenesis: X-ray analysis at atomic resolution.
J. Mol. Biol. 306, 733–744 (2001).

15. Curtis, A. J. et al. Thyroxine binding by human transthyretin variants:
mutations at position 119, but not position 54, increase thyroxine binding
affinity. J. Clin. Endocrinol. Metab. 78, 459–462 (1994).

16. Hamilton, J. A. & Benson, M. D. Transthyretin: a review from a structural
perspective. Cell. Mol. Life Sci. 58, 1491–1521 (2001).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6681 ARTICLE

NATURE COMMUNICATIONS | 6:5681 | DOI: 10.1038/ncomms6681 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.thyroidmanager.org/chapter/ontogeny-anatomy-metabolismand-physiology-of-the-thyroid
http://www.thyroidmanager.org/chapter/ontogeny-anatomy-metabolismand-physiology-of-the-thyroid
http://www.nature.com/naturecommunications


17. Yang, T. P. et al. Genevar: a database and Java application for the analysis and
visualization of SNP-gene associations in eQTL studies. Bioinformatics 26,
2474–2476 (2010).

18. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple
tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

19. Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states,
conservation, and regulatory motif alterations within sets of genetically linked
variants. Nucleic Acids Res. 40, D930–D934 (2012).

20. Yaden, B. C., Garcia, 3rd M., Smith, T. P. & Rhodes, S. J. Two promoters
mediate transcription from the human LHX3 gene: involvement of nuclear
factor I and specificity protein 1. Endocrinology 147, 324–337 (2006).

21. Savage, J. J., Yaden, B. C., Kiratipranon, P. & Rhodes, S. J. Transcriptional
control during mammalian anterior pituitary development. Gene 319, 1–19
(2003).

22. Adzhubei, I. A. et al. A method and server for predicting damaging missense
mutations. Nat. Methods 7, 248–249 (2010).

23. Bernstein, B. E. et al. An integrated encyclopedia of DNA elements in the
human genome. Nature 489, 57–74 (2012).

24. Davydov, E. V. et al. Identifying a high fraction of the human genome to be
under selective constraint using GERPþ þ . PLoS Comput. Biol. 6, e1001025
(2010).

25. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary
constraint using 29 mammals. Nature 478, 476–482 (2011).

26. Medici, M. et al. A large-scale association analysis of 68 thyroid hormone
pathway genes with serum TSH and FT4 levels. Eur. J. Endocrinol. 164,
781–788 (2011).

27. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to
connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

28. Das, B. et al. Gene expression changes at metamorphosis induced by thyroid
hormone in Xenopus laevis tadpoles. Dev. Biol. 291, 342–355 (2006).

29. Taylor, P. N. et al. Falling threshold for treatment of borderline elevated
thyrotropin levels—balancing benefits and risks: evidence from a large
community-based study. JAMA Intern. Med. 174, 32–39 (2013).

30. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype
imputation method for the next generation of genome-wide association studies.
PLoS Genet. 5, e1000529 (2009).

31. Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence
and genotype data to estimate haplotypes and unobserved genotypes. Genet.
Epidemiol. 34, 816–834 (2010).

32. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast
and accurate genotype imputation in genome-wide association studies through
pre-phasing. Nat. Genet. 44, 955–959 (2012).

33. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint
method for genome-wide association studies by imputation of genotypes. Nat.
Genet. 39, 906–913 (2007).

34. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for
association studies. Nat. Genet. 44, 821–824 (2012).

35. Aulchenko, Y. S., Struchalin, M. V. & van Duijn, C. M. ProbABEL package for
genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134
(2010).

36. Xu, C. et al. Estimating genome-wide significance for whole-genome
sequencing studies. Genet. Epidemiol. 38, 281–290 (2014).

37. Magi, R. & Morris, A. P. GWAMA: software for genome-wide association
meta-analysis. BMC Bioinformatics 11, 288 (2010).

38. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature
452, 423–428 (2008).

39. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat.
Genet. 45, 580–585 (2013).

40. Wu, M. C. et al. Rare-variant association testing for sequencing data with the
sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

41. Voorman, A., Brody, J. & Lumley, T. SkatMeta: an R package for meta
analyzing region-based tests of rare DNA variants. Available at (http://cran.r-
project.org/web/packages/skatMeta (2013).

42. Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS
Genet. 9, e1003348 (2013).

Acknowledgements
We are grateful to all the participants in the cohort studies and the staff involved
including interviewers, computer and laboratory technicians, clerical workers, research
scientists, volunteers, managers, receptionists and nurses. This study makes use of the
data generated by the UK10K Consortium. Funding for UK10K was provided by the
Wellcome Trust under award WT091310. A full list of the investigators who contributed
to the generation of the data is available at www.UK10K.org. Further acknowledgements
from all the cohorts and details on cohort and investigator funding can be found in the
Supplementary Methods.

Author contributions
Cohort collection was done by P.N.T., E.P., G.A., C.M.D., S.N., J.P.B., J.H., E.M.L., V.P.,
W.W., D.T., J.P.W., C.M.D., T.D.S., G.D.S., R.D., J.B.R., S.S., N.S., N.J.T. and S.G.W.
Phenotype cleaning was done by P.N.T., E.P., S.C., P.J.C., M.T., S.J.B., B.H.M., S.S., N.S.,
N.J.T. and S.G.W. Genotype data processing and cleaning was done by S.J.B., J.M., K.W.,
Y.M., J.P.B., J.H., S.M., D.M., D.S. and E.Z. Genotype–phenotype association testing was
done by P.N.T., E.P., S.C., P.J.C., M.T., S.J.B., B.H.M., H.A.S., M.R.B., P.C., P.D., F.D.,
V.F., C.G., E.G., A.D.J., J.H., V.P., J.R.B., J.T.B., W.Y., C.R., T.G., G.L.S. and H.-F.Z.
Bioinformatics by S.C., P.J.C., B.H.M., S.J.B., J.M., K.W., Y.M., S.G.W., J.R.B.P., M.R.B.,
P.D. and F.D. Manuscript drafting was done by P.N.T., E.P., S.C., P.J.C., M.T., S.J.B.,
B.H.M., J.P.W., C.M.D., J.P.W., J.B.T., M.R.B., J.R.B.P., F.D., S.S., N.J.T. and S.G.W. All
authors critically revised the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Taylor, P. N. et al. Whole-genome sequence-based analysis
of thyroid function. Nat. Commun. 6:5681 doi: 10.1038/ncomms6681 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

The UK10K Consortium

Saeed Al Turki9,27, Carl Anderson9, Richard Anney28, Dinu Antony29, Maria Soler Artigas28, Muhammad Ayub30,

Senduran Balasubramaniam9, Jeffrey C. Barrett9, Inês Barroso9,31, Phil Beales29, Jamie Bentham32,

Shoumo Bhattacharya32, Ewan Birney33, Douglas Blackwood34, Martin Bobrow35, Elena Bochukova31,

Patrick Bolton36, Rebecca Bounds31, Chris Boustred8, Gerome Breen36,37, Mattia Calissano38, Keren Carss9,

Krishna Chatterjee31, Lu Chen9,39, Antonio Ciampi16, Sebhattin Cirak38,40, Peter Clapham9, Gail Clement22,

Guy Coates9, David Collier41,42, Catherine Cosgrove32, Tony Cox9, Nick Craddock43, Lucy Crooks9,44,

Sarah Curran36,45,46, David Curtis47, Allan Daly9, Aaron Day-Williams9,48, Ian N.M. Day8, Thomas Down9,49,

Yuanping Du50, Ian Dunham32, Sarah Edkins9, Peter Ellis9, David Evans8,51, Sadaf Faroogi31, Ghazaleh Fatemifar8,

David R. Fitzpatrick52, Paul Flicek9,33, James Flyod9,53, A. Reghan Foley16, Christopher S. Franklin9, Marta Futema54,

Louise Gallagher28, Matthias Geihs9, Daniel Geschwind55, Heather Griffin56, Detelina Grozeva35, Xueqin Guo50,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6681

8 NATURE COMMUNICATIONS | 6:5681 | DOI: 10.1038/ncomms6681 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

(http://cran.r-project.org/web/packages/skatMeta
(http://cran.r-project.org/web/packages/skatMeta
www.UK10K.org
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/3.0/
http://www.nature.com/naturecommunications


Xiaosen Guo50, Hugh Gurling49, Deborah Hart22, Audrey Hendricks9,57, Peter Holmans43, Bryan Howie58,

Liren Huang50, Tim Hubbard9,49, Steve E. Humphries54, Matthew E. Hurles9, Pirro Hysi22, David K. Jackson9,

Yalda Jamshidi59, Tian Jing50, Chris Joyce9, Jane Kaye56, Thomas Keane9, Julia Keogh31, John Kemp8,51,

Karen Kennedy9, Anja Kolb-Kokocinski9, Genevieve Lachance22, Cordelia Langford9, Daniel Lawson8, Irene Lee60,

Monkol Lek61, Jieqin Liang50, Hong Lin50, Rui Li15,25, Yingrui Li50, Ryan Liu62, Jouko Lönnqvist63,
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