163 research outputs found

    Proactive temperature balancing for low cost thermal management in MPSoCs

    Full text link
    Abstract — Designing thermal management strategies that reduce the impact of hot spots and on-die temperature variations at low performance cost is a very significant challenge for multiprocessor system-on-chips (MPSoCs). In this work, we present a proactive MPSoC thermal man-agement approach, which predicts the future temperature and adjusts the job allocation on the MPSoC to minimize the impact of thermal hot spots and temperature variations without degrading performance. In addition, we implement and compare several reactive and proactive management strategies, and demonstrate that our proactive temperature-aware MPSoC job allocation technique is able to dramatically reduce the adverse effects of temperature at very low performance cost. We show experimental results using a simulator as well as an implementation on an UltraSPARC T1 system. I

    Gene Regulatory Network Interactions in Sea Urchin Endomesoderm Induction

    Get PDF
    A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm–gene regulatory network (EM-GRN) provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell–GRN (PMC-GRN) that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFβ cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification

    Attachment, emotion regulation, and well‐being in couples: Intrapersonal and interpersonal associations

    Get PDF
    Objective: There is a well‐established link in the literature between secure romantic attachment orientation and psychological well‐being. The underlying processes of this link and the couple interplay between attachment and well‐being are notably less explored. Using a dyadic framework, this study examines both couple members' emotion regulation strategies as potential mediators of this link. Method: One hundred and nineteen heterosexual couples completed self‐report measures on attachment style, psychological well‐being, tendency to suppress emotions, and emotion expression. Analyses were performed using the actor–partner interdependence mediation model that distinguishes between intrapersonal and interpersonal influences. Results: Results showed that controlling for relationship length, there was an intrapersonal indirect effect of attachment avoidance on psychological well‐being through emotion suppression. Moreover, interpersonal indirect effects were found (a) with individual attachment avoidance being associated with partner's psychological well‐ being through own emotion expression and (b) individual's attachment anxiety being associated with partner's psychological well‐being through both own's emotion expression and partner's emotion suppression. Conclusions: These findings highlight the complex associations among attachment, emotion regulation, and well‐being and point out the role of emotion regulation as a potential underlying pathway explaining these associations. The results suggest the importance of considering the relational nature of emotional and attachment dynamics in couples

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    The Effects of Experimentally Induced Rumination, Positive Reappraisal, Acceptance, and Distancing When Thinking About a Stressful Event on Affect States in Adolescents

    Get PDF
    The current study compares the effects of experimentally induced rumination, positive reappraisal, distancing, and acceptance on affect states in adolescents aged 13–18. Participants (N = 160) were instructed to think about a recent stressful event. Next, they received specific instructions on how to think about that event in each condition. Manipulation checks revealed that the manipulations were successful, except for acceptance. The two most reported events were “a fight” and “death of loved one”. Results showed that positive reappraisal (i.e., thinking about the benefits and personal growth) caused a significantly larger increase in positive affect and decrease in negative affect compared to rumination, distancing, and acceptance. Current findings implicate that positive reappraisal seems an adequate coping strategy in the short-term, and therefore could be applied in interventions for youth experiencing difficulties managing negative affect. Future research should focus on long-term effects of these cognitive strategies and on more intensive training of acceptance

    An examination of the self-referent executive processing model of test anxiety: control, emotional regulation, self-handicapping, and examination performance

    Get PDF
    According to the self-referent executive processing (S-REF) model, test anxiety develops from interactions between three systems: executive self-regulation processes, self-beliefs, and maladaptive situational interactions. Studies have tended to examine one system at a time, often in conjunction with how test anxiety relates to achievement outcomes. The aim of this study was to enable a more thorough test of the S-REF model by examining one key construct from each of these systems simultaneously. These were control (a self-belief construct), emotional regulation through suppression and reappraisal (an executive process), and self-handicapping (a maladaptive situational interaction). Relations were examined from control, emotional regulation, and self-handicapping to cognitive test anxiety (worry), and subsequent examination performance on a high-stakes test. Data were collected from 273 participants in their final year of secondary education. A structural equation model showed that higher control was indirectly related to better examination performance through lower worry, higher reappraisal was indirectly related to worse examination performance through higher worry, and higher self-handicapping was related to worse examination performance through lower control and higher worry. These findings suggest that increasing control and reducing self-handicapping would be key foci for test anxiety interventions to incorporate. © 2018 The Author(s

    Overcoming leakage in scalable quantum error correction

    Full text link
    Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path towards fault-tolerant quantum computation. Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than 1×1031 \times 10^{-3} throughout the entire device. The leakage removal process itself efficiently returns leakage population back to the computational basis, and adding it to a code circuit prevents leakage from inducing correlated error across cycles, restoring a fundamental assumption of QEC. With this demonstration that leakage can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure

    The evolutionary significance of polyploidy

    Get PDF
    Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity
    corecore