274 research outputs found

    Ten Year Operating Test Results and Post-Test Analysis of a 1/10 Segment Stirling Sodium Heat Pipe, Phase III

    Get PDF
    High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 yr) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described

    Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents

    Get PDF
    Rationale: Primary ciliary dyskinesia (PCD), a genetically heterogeneous, recessive disorder of motile cilia, is associated with distinct clinical features. Diagnostic tests, including ultrastructural analysis of cilia, nasal nitric oxide measurements, and molecular testing for mutations in PCD genes, have inherent limitations

    Constraining the Twomey effect from satellite observations: issues and perspectives

    Get PDF
    The Twomey effect describes the radiative forcing associated with a change in cloud albedo due to an increase in anthropogenic aerosol emissions. It is driven by the perturbation in cloud droplet number concentration (1Nd; ant) in liquid-water clouds and is currently understood to exert a cooling effect on climate. The Twomey effect is the key driver in the effective radiative forcing due to aerosol–cloud interactions, but rapid adjustments also contribute. These adjustments are essentially the responses of cloud fraction and liquid water path to 1Nd; ant and thus scale approximately with it. While the fundamental physics of the influence of added aerosol particles on the droplet concentration (Nd) is well described by established theory at the particle scale (micrometres), how this relationship is expressed at the large-scale (hundreds of kilometres) perturbation, 1Nd; ant, remains uncertain. The discrepancy between process understanding at particle scale and insufficient quantification at the climate-relevant large scale is caused by co-variability of aerosol particles and updraught velocity and by droplet sink processes. These operate at scales on the order of tens of metres at which only localised observations are available and at which no approach yet exists to quantify the anthropogenic perturbation. Different atmospheric models suggest diverse magnitudes of the Twomey effect even when applying the same anthropogenic aerosol emission perturbation. Thus, observational data are needed to quantify and constrain the Twomey effect. At the global scale, this means satellite data. There are four key uncertainties in determining 1Nd; ant, namely the quantification of (i) the cloud-active aerosol – the cloud condensation nuclei (CCN) concentrations at or above cloud base, (ii) Nd, (iii) the statistical approach for inferring the sensitivity of Nd to aerosol particles from the satellite data and (iv) uncertainty in the anthropogenic perturbation to CCN concentrations, which is not easily accessible from observational data. This review discusses deficiencies of current approaches for the different aspects of the problem and proposes several ways forward: in terms of CCN, retrievals of optical quantities such as aerosol optical depth suffer from a lack of vertical resolution, size and hygroscopicity information, non-direct relation to the concentration of aerosols, difficulty to quantify it within or below clouds, and the problem of insufficient sensitivity at low concentrations, in addition to retrieval errors. A future path forward can include utilising co-located polarimeter and lidar instruments, ideally including high-spectral-resolution lidar capability at two wavelengths to maximise vertically resolved size distribution information content. In terms of Nd, a key problem is the lack of operational retrievals of this quantity and the inaccuracy of the retrieval especially in broken-cloud regimes. As for the Nd-to-CCN sensitivity, key issues are the updraught distributions and the role of Nd sink processes, for which empirical assessments for specific cloud regimes are currently the best solutions. These considerations point to the conclusion that past studies using existing approaches have likely underestimated the true sensitivity and, thus, the radiative forcing due to the Twomey effect

    Dynamic Career Models and Inequality Research: A Reexamination of the Sørensen Model

    Get PDF
    This article presents a reexamination of the Sørensen model. This model derives the pattern of individual careers from structural considerations. If longitudinal data on individual careers are available, Sørensen's model provides two methods to infer the underlying structural parameter. This structural parameter gives a useful measure for unequal career chances. An implementation of these methods, using firm data, shows, however, that they lead to contradictory conclusions; this is shown to be the result of some unrealistic assumptions Sørensen uses in his derivation. Some more realistic assumptions are suggested that produce reasonable results. Finally, it is shown that despite these modifications, the main conclusions of the Sørensen model are preserved. This seems to be promising for future work with this model

    Further clinical and molecular delineation of the 15q24 microdeletion syndrome

    Get PDF
    Background Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. Aim To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. Methods Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. Results Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. Conclusion The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screenin

    Precipitation sensitivity to autoconversion rate in a numerical weather-prediction model

    Get PDF
    Aerosols are known to significantly affect cloud and precipitation patterns and intensity, but these interactions are ignored or very simplistically handled in climate and numerical weather-prediction (NWP) models. A suite of one-way nested Met Office Unified Model (UM) runs, with a single-moment bulk microphysics scheme was used to study two convective cases with contrasting characteristics observed in southern England. The autoconversion process that converts cloud water to rain is directly controlled by the assumed droplet number. The impact of changing cloud droplet number concentration (CDNC) on cloud and precipitation evolution can be inferred through changes to the autoconversion rate. This was done for a range of resolutions ranging from regional NWP (1 km) to high resolution (up to 100 m grid spacing) to evaluate the uncertainties due to changing CDNC as a function of horizontal grid resolution. The first case is characterised by moderately intense convective showers forming below an upper-level potential vorticity anomaly, with a low freezing level. The second case, characterised by one persistent stronger storm, is warmer with a deeper boundary layer. The colder case is almost insensitive to even large changes in CDNC, while in the warmer case a change of a factor of 3 in assumed CDNC affects total surface rain rate by ~17%. In both cases the sensitivity to CDNC is similar at all grid spacings <1 km. The contrasting sensitivities of these cases are induced by their contrasting ice-phase proportion. The ice processes in this model damp the precipitation sensitivity to CDNC. For this model the convection is sensitive to CDNC when the accretion process is more significant than the melting process and vice versa

    Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review: Diagnosis and Management of PCD

    Get PDF
    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, rare lung disease resulting in chronic oto‐sino‐pulmonary disease in both children and adults. Many physicians incorrectly diagnose PCD or eliminate PCD from their differential diagnosis due to inexperience with diagnostic testing methods. Thus far, all therapies used for PCD are unproven through large clinical trials. This review article outlines consensus recommendations from PCD physicians in North America who have been engaged in a PCD centered research consortium for the last 10 years. These recommendations have been adopted by the governing board of the PCD Foundation to provide guidance for PCD clinical centers for diagnostic testing, monitoring, and appropriate short and long‐term therapeutics in PCD patients. Pediatr Pulmonol. 2016;51:115–132. © 2015 The Authors. Pediatric Pulmonology Published by Wiley Periodicals, Inc
    corecore