58 research outputs found

    Quasi-elastic polarization-transfer measurements on the deuteron in anti-parallel kinematics

    Full text link
    We present measurements of the polarization-transfer components in the 2^2H(e,ep)(\vec e,e'\vec p) reaction, covering a previously unexplored kinematic region with large positive (anti-parallel) missing momentum, pmissp_{\rm miss}, up to 220 MeV/c/c, and Q2=0.65Q^2=0.65 (GeV/c)2({\rm GeV}/c)^2. These measurements, performed at the Mainz Microtron (MAMI), were motivated by theoretical calculations which predict small final-state interaction (FSI) effects in these kinematics, making them favorable for searching for medium modifications of bound nucleons in nuclei. We find in this kinematic region that the measured polarization-transfer components PxP_x and PzP_z and their ratio agree with the theoretical calculations, which use free-proton form factors. Using this, we establish upper limits on possible medium effects that modify the bound proton's form factor ratio GE/GMG_E/G_M at the level of a few percent. We also compare the measured polarization-transfer components and their ratio for 2^2H to those of a free (moving) proton. We find that the universal behavior of 2^2H, 4^4He and 12^{12}C in the double ratio (Px/Pz)A(Px/Pz)1H\frac{(P_x/P_z)^A}{(P_x/P_z)^{^1\rm H}} is maintained in the positive missing-momentum region

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas

    Get PDF
    Abstract Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans

    The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε

    Get PDF
    Replication fork stalling and accumulation of single-stranded DNA trigger the S phase checkpoint, a signalling cascade that, in budding yeast, leads to the activation of the Rad53 kinase. Rad53 is essential in maintaining cell viability, but its targets of regulation are still partially unknown. Here we show that Rad53 drives the hyper-SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε, principally following replication forks stalling induced by nucleotide depletion. Pol2 is the main target of SUMOylation within the replisome and its modification requires the SUMO-ligase Mms21, a subunit of the Smc5/6 complex. Moreover, the Smc5/6 complex co-purifies with Pol ε, independently of other replisome components. Finally, we map Pol2 SUMOylation to a single site within the N-terminal catalytic domain and identify a SUMO-interacting motif at the C-terminus of Pol2. These data suggest that the S phase checkpoint regulate Pol ε during replication stress through Pol2 SUMOylation and SUMO-binding abilit

    Chromosome Duplication in <i>Saccharomyces cerevisiae</i>

    Get PDF
    The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G 1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation. Keywords: DNA replication; cell cycle; chromatin; chromosome duplication; genome stability; YeastBookNational Institutes of Health (U.S.) (Grant GM-052339

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore