29 research outputs found

    A Numerical Scheme Based on Semi-Static Hedging Strategy

    Full text link
    In the present paper, we introduce a numerical scheme for the price of a barrier option when the price of the underlying follows a diffusion process. The numerical scheme is based on an extension of a static hedging formula of barrier options. For getting the static hedging formula, the underlying process needs to have a symmetry. We introduce a way to "symmetrize" a given diffusion process. Then the pricing of a barrier option is reduced to that of plain options under the symmetrized process. To show how our symmetrization scheme works, we will present some numerical results applying (path-independent) Euler-Maruyama approximation to our scheme, comparing them with the path-dependent Euler-Maruyama scheme when the model is of the Black-Scholes, CEV, Heston, and (λ) (\lambda) -SABR, respectively. The results show the effectiveness of our scheme

    Development of static magnetic refrigeration system using multiple high-temperature superconducting coils

    Get PDF
    It is expected to build a sustainable social system that uses “hydrogen” as a fuel to generate electricity without emitting CO2. To realize this, technology for storing a large amount of hydrogen is indispensable, and storage as liquid hydrogen is ideal. However, the efficiency of the cooling device in the temperature range around 20 K required for long-term storage with liquid hydrogen is low, and the equipment is huge and expensive, so it has not been established as a widely used technology. Magnetic refrigeration is expected to be a highly efficient refrigerator in the temperature range of around 20 K because it can realize an ideal refrigeration cycle. However, in magnetic refrigeration, it is necessary to give a magnetic field change to the magneto caloric material (MCM). Further, in order to perform cooling with a large capacity and extremely low temperature by magnetic refrigeration, the magnetic field strength of a permanent magnet is insufficient, and it is indispensable to use a superconducting coil capable of generating a strong magnetic field with low power consumption. This study aims to develop a static magnetic refrigeration system using multiple high-temperature superconducting coils. By utilizing the energy storage characteristics of the superconducting coil, we are considering a magnetic refrigeration system that can repeatedly generate magnetic field changes to save energy without the need for large amounts of energy to be taken in and out of the outside. We report on the technical feasibility of a static magnetic refrigeration system using HTS coils. The power consumption including the AC loss of two superconducting coils, which is the basic configuration of the static magnetic refrigeration system, is calculated, and the efficiency is estimated as a ratio to the assumed refrigeration capacity of the MCM

    Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation

    Get PDF
    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∌1 s/frame, which is ∌50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH)2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution. © 2017 American Chemical Society.Embargo Period 12 month

    Development of FAIR conductor and HTS coil for fusion experimental device

    Get PDF
    This study is aimed at the development of high-temperature superconducting (HTS) magnets for application in a fusion experimental device next to the Large Helical Device (LHD). By applying the features of an HTS, high current density and high stability can be balanced. As a candidate conductor, REBCO tapes and pure aluminum sheets are laminated and placed in the groove of an aluminum alloy jacket with a circular cross-section, after joining a lid to the jacket using friction stir welding, and twisting the conductor to homogenize its electrical and mechanical properties. The FAIR conductor derives its name from the processes and materials used in its development: Friction stir welding, an Aluminum alloy jacket, Indirect cooling, and REBCO tapes. Initially, the degradation of the critical current of the FAIR conductor is observed, which was eventually resolved. The development status of the FAIR conductor has been reported

    Improvement of Ic degradation of HTS Conductor (FAIR Conductor) and FAIR Coil Structure for Fusion Device

    Get PDF
    As a high-temperature superconducting (HTS) conductor with a large current capacity applicable to a nuclear fusion experimental device, REBCO (REBa 2 CuO y ) tapes and high-purity aluminum sheets are alternately laminated, placed in a groove of an aluminum alloy jacket having a circular cross section, and the lid is friction-stir welded. To make the current distribution and mechanical characteristics uniform, the conductor is twisted at the end of the manufacturing process. In the early prototype conductor, when the I c was measured in liquid nitrogen under self-magnetic field conditions, I c degradations were observed from the beginning, and the characteristic difference between the two prototype samples under the same manufacturing conditions were large. Furthermore, I c degradation was progressed by repeating the thermal cycle from room temperature to liquid nitrogen temperature. This I c degradation did not occur uniformly in the longitudinal direction of the conductor but was caused by local I c degradation occurring at multiple locations. If the conductor was not manufactured uniformly in the longitudinal direction, the difference in thermal shrinkage between the REBCO tape and the aluminum alloy jacket caused local stress concentration in the REBCO tape and buckling occurred. Element experiments to explain this mechanism were conducted to clarify the conditions under which I c degradation due to buckling occurs. Then prototype conductors were tested with improved manufacturing methods, and as a result, I c degradation could be suppressed to 20% or less. We have achieved the prospect of producing a conductor with uniform characteristics in the longitudinal direction

    Common Variants in the COL4A4 Gene Confer Susceptibility to Lattice Degeneration of the Retina

    Get PDF
    Lattice degeneration of the retina is a vitreoretinal disorder characterized by a visible fundus lesion predisposing the patient to retinal tears and detachment. The etiology of this degeneration is still uncertain, but it is likely that both genetic and environmental factors play important roles in its development. To identify genetic susceptibility regions for lattice degeneration of the retina, we performed a genome-wide association study (GWAS) using a dense panel of 23,465 microsatellite markers covering the entire human genome. This GWAS in a Japanese cohort (294 patients with lattice degeneration and 294 controls) led to the identification of one microsatellite locus, D2S0276i, in the collagen type IV alpha 4 (COL4A4) gene on chromosome 2q36.3. To validate the significance of this observation, we evaluated the D2S0276i region in the GWAS cohort and in an independent Japanese cohort (280 patients and 314 controls) using D2S0276i and 47 single nucleotide polymorphisms covering the region. The strong associations were observed in D2S0276i and rs7558081 in the COL4A4 gene (Pc = 5.8×10−6, OR = 0.63 and Pc = 1.0×10−5, OR = 0.69 in a total of 574 patients and 608 controls, respectively). Our findings suggest that variants in the COL4A4 gene may contribute to the development of lattice degeneration of the retina

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Effects of Hochuekkito, a traditional Japanese medicine (Kampo), on reproduction of aging female mice

    No full text
    Abstract Purpose To determine the potentials of Hochuekkito (HET) treatment for aging infertility. Methods Mice at 36 weeks of age were fed without (control, n = 40) or with low (100 mg/kg/day, n = 24) and high (1000 mg/kg/day, n = 38) doses of HET for 12 weeks. Aging animals at 48 weeks of age were used for in vitro fertilization‐embryo transfer (IVF‐ET), and their ovaries were subjected to histological and quantitative inflammation analyses. Results HET administration decreased transcript levels of ovarian inflammatory markers, interleukin 6 (IL‐6), IL‐1ÎČ, tumor necrosis factor (TNF)‐α, and interferon‐gamma (IFN‐γ) but suppressed ovulation rates and the number of ovulated oocytes in aging mice. Furthermore, HET treatment decreased the rates of oocytes maturation and fertilization and the cumulus‐cell expression of TNF‐α‐induced protein 6 and epidermal growth factor receptor. After IVF‐ET, no improvement of declined live offspring rate by aging was achieved by HET administration, although there were no adverse effects on embryo development and implantation as well as gross morphology and bodyweight of pups. Conclusion Present study indicated HET treatment interfered with ovulation and fertilization in aging mice without affecting ovarian follicle development. No improvement on the age‐associated decline of live offspring rate and follicle development was achieved after HET treatment
    corecore