50 research outputs found

    Healthy, Wealthy and Wise? Cardiovascular Health and Disease in the United States and Switzerland

    Get PDF
    Cardiovascular disease is one of the most significant public health problems of our time, as it accounts for more deaths worldwide than any other cause. This paper uses a comparison of the United States and Switzerland, as well as objectives outlined in the WHO “2008-2013 Action Plan for the Global Strategy for the Prevention and Control of Noncommunicable Diseases,” to understand opportunities and challenges of addressing cardiovascular health and disease on a national and global level. Comparisons of demographics, social determinants of health, risk factors, and governmental policies and programs for these two countries provided a context for exploring cardiovascular health and disease. There is evidence that the United States and Switzerland view health and disease differently. These perspectives in turn influence national priorities, policies, and programs. There are also differences in data collection and measurement tools used to document progress on cardiovascular health goals. The findings from the analyses of these two countries have implications for a global agenda to prevent and control cardiovascular disease

    Contemporary temperature-driven divergence in a Nordic freshwater fish under conditions commonly thought to hinder adaptation

    Get PDF
    BACKGROUND: Evaluating the limits of adaptation to temperature is important given the IPCC-predicted rise in global temperatures. The rate and scope of evolutionary adaptation can be limited by low genetic diversity, gene flow, and costs associated with adaptive change. Freshwater organisms are physically confined to lakes and rivers, and must therefore deal directly with climate variation and change. In this study, we take advantage of a system characterised by low genetic variation, small population size, gene flow and between-trait trade-offs to study how such conditions affect the ability of a freshwater fish to adapt to climate change. We test for genetically-based differences in developmental traits indicating local adaptation, by conducting a common-garden experiment using embryos and larvae from replicate pairs of sympatric grayling demes that spawn and develop in natural cold and warm water, respectively. These demes have common ancestors from a colonization event 22 generations ago. Consequently, we explore if diversification may occur under severely constraining conditions. RESULTS: We found evidence for divergence in ontogenetic rates. The divergence pattern followed adaptation predictions as cold-deme individuals displayed higher growth rates and yolk conversion efficiency than warm-deme individuals at the same temperature. The cold-deme embryos had a higher rate of muscle mass development. Most of the growth- and development differences occurred prior to hatch. The divergence was probably not caused by genetic drift as there was a strong degree of parallelism in the divergence pattern and because phenotypic differentiation (Q(ST)) was larger than estimated genetic drift levels (microsatellite F(ST)) between demes from different temperature groups. We also document that these particular grayling populations cannot develop successfully at temperatures above 12°C, whereas other European populations can, and that increasing the muscle mass development rate comes at the cost of some skeletal trait development rates. CONCLUSIONS: This study shows that genetically based phenotypic divergence can prevail even under conditions of low genetic variation and ongoing gene flow. Furthermore, population-specific maximum development temperatures along with musculoskeletal developmental trade-offs may constrain adaptation

    Patient/Family Education for Newly Diagnosed Pediatric Oncology Patients

    Get PDF
    There is a paucity of data to support evidence-based practices in the provision of patient/family education in the context of a new childhood cancer diagnosis. Since the majority of children with cancer are treated on pediatric oncology clinical trials, lack of effective patient/family education has the potential to negatively affect both patient and clinical trial outcomes. The Children’s Oncology Group Nursing Discipline convened an interprofessional expert panel from within and beyond pediatric oncology to review available and emerging evidence and develop expert consensus recommendations regarding harmonization of patient/family education practices for newly diagnosed pediatric oncology patients across institutions. Five broad principles, with associated recommendations, were identified by the panel, including recognition that (1) in pediatric oncology, patient/family education is family-centered; (2) a diagnosis of childhood cancer is overwhelming and the family needs time to process the diagnosis and develop a plan for managing ongoing life demands before they can successfully learn to care for the child; (3) patient/family education should be an interprofessional endeavor with 3 key areas of focus: (a) diagnosis/treatment, (b) psychosocial coping, and (c) care of the child; (4) patient/family education should occur across the continuum of care; and (5) a supportive environment is necessary to optimize learning. Dissemination and implementation of these recommendations will set the stage for future studies that aim to develop evidence to inform best practices, and ultimately to establish the standard of care for effective patient/family education in pediatric oncology

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Correction: Nature Communications 10 (2019): art. 4386 DOI: 10.1038/s41467-019-12095-8Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.Peer reviewe

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    ESR1/SYNE1 Polymorphism and Invasive Epithelial Ovarian Cancer Risk: An Ovarian Cancer Association Consortium Study

    Get PDF
    We genotyped 13 single nucleotide polymorphisms (SNPs) in the estrogen receptor alpha gene (ESR1) region in three population-based case-control studies of epithelial ovarian cancer conducted in the United States, comprising a total of 1,128 and 1,866 non-Hispanic white invasive cases and controls, respectively. A SNP 19 kb downstream of ESR1 (rs2295190, G-to-T change) was associated with invasive ovarian cancer risk, with a per-T-allele odds ratio (OR) of 1.24 (95% confidence interval (CI), 1.06–1.44, p=0.006). rs2295190 is a non-synonymous coding SNP in a neighboring gene called spectrin repeat containing, nuclear envelope 1 (SYNE1) which is involved in nuclear organization and structural integrity, function of the Golgi apparatus, and cytokinesis. An isoform encoded by SYNE1 has been reported to be downregulated in ovarian and other cancers. rs2295190 was genotyped in an additional 12 studies through the Ovarian Cancer Association Consortium, with 5,279 invasive epithelial cases and 7,450 controls. The per-T-allele OR for this 12-study set was 1.09 (95% CI, 1.02–1.17, p=0.017). Results for the serous subtype in the 15 combined studies were similar to those overall (n=3,545; OR=1.09, 95% CI, 1.01–1.18, p=0.025), and our findings were strongest for the mucinous subtype (n=447; OR=1.32, 95% CI, 1.11–1.58, p=0.002). No association was observed for the endometrioid subtype. In an additional analysis of 1,459 borderline ovarian cancer cases and 7,370 controls, rs2295190 was not associated with risk. These data provide suggestive evidence that the rs2295190 T allele, or another allele in linkage disequilibrium with it, may be associated with increased risk of invasive ovarian cancer
    corecore