93 research outputs found

    Effect of Mass Transfer on Aeroheating in Hypersonic Chemically Reacting Boundary Layers

    Get PDF
    Heat flux characterization of high-enthalpy boundary layer flows is key to optimize the performance and design of Thermal Protection System of next generation aerospace vehicles [1]. At atmospheric entry hypersonic speeds, ablation as well as surface catalycity impact boundary layer aeroheating. Out-gassing occurring from an ablative surface in planetary entry environment introduces a rich set of problems in thermodynamic, fluid dynamic, and material pyrolysis. Ablation leads to out-gassing and surface roughness, both of which are known to affect surface heating in hypersonic chemically reacting boundary layers via three main routes: gas blowing into the boundary layer from the wall, changing the surface heat transfer due to wall-flow chemical reactions, and modifying surface roughness via ablative processes

    Effect of Out-Gassing on the Onset of Hypersonic Boundary Layer Transition

    Get PDF
    Prediction and control of the onset of transition and the associated variation in aerothermodynamic parameters in high-speed flows is key to optimize the performance and design of Thermal Protection Systems (TPS) of next-generation aerospace vehicles [1]. Boundary Layer Transition (BLT) characteristics can influence the surface heating budget determining the TPS thickness and consequently its weight penalty. Ablative heatshields are designed to alleviate the high heat flux at the surface through pyrolysis of their polymeric matrix and subsequent fiber ablation [2]. Pyrolysis leads to out-gassing and non-uniform ablation lead to surface roughness, both of which are known to influence the transition process. An ablator impacts BLT through three main routes: gas injecting into the boundary layer from the wall, changing the surface heat transfer due to wall-flow chemical reactions, and modifying surface roughness [3]. In preparation to Mars 2020 mission post-flight analysis, the predictive transition capability has been initiated toward hard-coupling porous material response analysis and aerothermal environment calculation

    Compressibility Effects on the Kelvin-Helmholtz Instability and Mixing Layer Flows

    Get PDF
    The objective of the thesis is to analyze, understand and explicate the various physical mechanisms underlying the suppression of instability and mixing in compressible mixing layers. The investigation comprises of three studies which employ linear analysis and Direct Numerical Simulation (DNS). The first study examines the effect of compressibility on the underlying planar Kelvin-Helmholtz (KH) instability. The transformative influence of compressibility on the ubiquitous free shear-flow instability is investigated. This study focuses on the change in the character of pressure from a Lagrange-multiplier in incompressible flows to a thermodynamic variable in compressible flows. Linear analysis reveals that compressibility engenders the formation of a dilatational-interface-layer (DIL) within which the velocity perturbation is wave-like rather than vortical. Inherently unsteady dilatational action is shown to disrupt vortex merging and roll-up leading to suppression of KH instability. The second study examines the effect of perturbation alignment and non-linear interaction on the stability of compressible mixing layers. Linear analysis clearly shows that compressibility effects diminish with increasing obliqueness of the perturbation with respect to the shear plane. Notably, spanwise perturbations are impervious to Mach number effects. The non-linear effects are examined using DNS. It is shown that triadic interactions among the perturbation wavemodes lead to new perturbation wavemodes that are aligned closed to the spanwise directions and hence unstable. The third study examines mixing layer flow structure at various Mach numbers. At low speeds, the mixing layers exhibit strong spanwise rollers and short streamwise ribs. The effect of Mach number on the evolution of structures and the interaction between them are investigated in detail. With increasing Mach numbers, the spanwise rollers are suppressed. In the absence of spanwise rollers, the streamwise ribs align to form streamwise structures

    Design, synthesis and Anti-cholinesterase activity of indole-Isoxazole carbohydrazide derivatives

    Get PDF
    A novel series of carbohydrazide indole-isoxazole hybrid derivatives have been synthesized. All the title compounds were characterized by 1H NMR, 13C NMR, MS and IR spectral data. The in vitro anti-cholinesterase activity of all the compounds were evaluated. Introduction: Alzheimer disease (AD) has emerged as the most prevalent age-related neurodegenerative diseases and the main cause of dementia, which is very common in elder population with high morbidity in such a manner that the daily activity of patients is completely affected by the resulting cognitive impairments. In recent years, most of therapeutic treatments for AD has focused on the inhibition of acetylcholinesterase (AChE) to increase the level of ACh in cholinergic synaptic cleft. Indole and its derivatives are very important heterocyclic compounds in drug-discovery studies that exhibit diverse range of biological activities like antimicrobial, anticancer, anti-Alzheimer and anti-platelet aggregation activity. Herein, in this study on the synthesis of bioactive compounds, we describe design, synthesis and anti-cholinesterase activity of N-benzylidene-5-(1-methyl-1H-indol-3-yl)isoxazole-3-carbohydrazide. Methods and Results: The title compounds were prepared via the 5-(1-methyl-1H-indol-3-yl)isoxazole-3-carbohydrazide which is key intermediate for the production of the desired compounds. Condensation with carbaldehydes in water and acetic acid afforded the title compounds. All the synthesized compounds were characterized by 1H NMR, 13C NMR, MS and IR spectral data. The in vitro anti-cholinesterase activity of all the compounds were evaluated. Conclusions: The target compounds were obtained from proper aldehydes and N-benzylidene-5-(1-methyl-1H-indol-3-yl)isoxazole-3-carbohydrazide condensation with good to excellent yields. The AChE and BuChE inhibition activity of the synthesized compounds were evaluated

    Heatshield Entry Modeling Using a Design, Analysis, and Optimization Toolbox

    Get PDF
    The Mars Science Laboratory (MSL) was protected during its Mars atmospheric entry by an instrumented heatshield that used NASA's Phenolic Impregnated Carbon Ablator (PICA). PICA is a lightweight carbon fiber/polymeric resin material that offers excellent performances for protecting probes during planetary entry. The Mars Entry Descent and Landing Instrument (MEDLI) suite on MSL offers unique in-flight validation data for models of atmospheric entry and material response. MEDLI recorded, among others, time-resolved in-depth temperature data of PICA using thermocouple sensors assembled in the MEDLI Integrated Sensor Plugs (MISP). The objective of this work is to showcase the capability of the Design, Analysis, and Optimization of Thermal Protection Materials (DAOTPM) software. DAO-TPM is a Python based framework that works as a link between mission design, aerothermal and radiative environment computation, Thermal Protection Systems (TPS) microstructure analysis, material response and optimization tools. The toolbox has a Graphical User Interface (GUI) that allows the user to build as well as run the various software and utilities used to design, analyze and optimize a heatshield during atmospheric entry

    Monitoring of Orthotomicus erosus (Coleoptera: Curculionidae) using pheromone trap in pine forests of western Tehran

    Get PDF
    The Mediterranean pine engraver, Orthotomicus erosus (Wollaston) (Col.: Curculionidae: Scolytinae), is a destructive bark beetle in pine forests worldwide. Regarding the recent outbreak of O. erosus in Iran, its flight activity and population density were monitored in four contaminated sites in western Tehran. These four sampling sites included Tabiat Park, Khargush Darreh Forest Park, Chitgar Park behind Bam Riding Club as well as Chitgar Park 9th Aghaghiya Street (western Tehran). Two pheromone traps (ECONEX ORTHOTOMICUS EROSUS 60 DAYS pheromone, Spain) were installed in each sampling site at the height of 2.5 m in the south direction of the pine trees. The number of trapped adults was recorded at 10-day intervals from April 2019 to March 2020. In total, 8514 adults of O. erosus were collected using pheromone traps during the sampling period. The results showed that the adult flight started from April in four sampling sites. The flight periods of adults continued until November in Tabiat Park, Khargush Darreh Forest Park, and Chitgar Park, behind Bam Riding Club. Differently, the last adults were collected in October in Chitgar Park, 9th Aghaghiya Street. In addition, the flight peaks of O. erosus occurred in August in Tabiat Park, Khargush Darreh Forest Park, and Chitgar Park, behind Bam Riding Club. However, the highest number of adults were trapped in July in Chitgar Park, 9th Aghaghiya Street. Based on our results, the number of trapped adults was significantly different in sampling sites. The mean number of trapped adults was the highest (183.25 ± 0.11) in Chitgar Park, 9th Aghaghiya Street and lowest (106.32 ± 0.07) in Tabiat Park during the whole monitoring experiment. These findings on flight activity and population fluctuation of O. erosus in local conditions could be helpful to establish an efficient and successful management program for this destructive pest

    Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Findings In 2019, 273 center dot 9 million (95% uncertainty interval 258 center dot 5 to 290 center dot 9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 center dot 72% (4 center dot 46 to 5 center dot 01). 228 center dot 2 million (213 center dot 6 to 244 center dot 7; 83 center dot 29% [82 center dot 15 to 84 center dot 42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global agestandardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 center dot 21% [-1 center dot 26 to -1 center dot 16]), similar progress was not observed for chewing tobacco (0 center dot 46% [0 center dot 13 to 0 center dot 79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 center dot 94% [-1 center dot 72 to -0 center dot 14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Summary Background Chewing tobacco and other types of smokeless tobacco use have had less attention from the global health community than smoked tobacco use. However, the practice is popular in many parts of the world and has been linked to several adverse health outcomes. Understanding trends in prevalence with age, over time, and by location and sex is important for policy setting and in relation to monitoring and assessing commitment to the WHO Framework Convention on Tobacco Control. Methods We estimated prevalence of chewing tobacco use as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 using a modelling strategy that used information on multiple types of smokeless tobacco products. We generated a time series of prevalence of chewing tobacco use among individuals aged 15 years and older from 1990 to 2019 in 204 countries and territories, including age-sex specific estimates. We also compared these trends to those of smoked tobacco over the same time period. Findings In 2019, 273 & middot;9 million (95% uncertainty interval 258 & middot;5 to 290 & middot;9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 & middot;72% (4 & middot;46 to 5 & middot;01). 228 & middot;2 million (213 & middot;6 to 244 & middot;7; 83 & middot;29% [82 & middot;15 to 84 & middot;42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global age standardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 & middot;21% [-1 & middot;26 to -1 & middot;16]), similar progress was not observed for chewing tobacco (0 & middot;46% [0 & middot;13 to 0 & middot;79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 & middot;94% [-1 & middot;72 to -0 & middot;14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Copyright (c) 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore