223 research outputs found

    Flavor Physics and the Triviality Bound on the Higgs Mass

    Get PDF
    The triviality of the scalar sector of the standard one-doublet Higgs model implies that this model is only an effective low-energy theory valid below some cut-off scale Λ\Lambda. The underlying high-energy theory must include flavor dynamics at a scale of order Λ\Lambda or greater in order to give rise to the different Yukawa couplings of the Higgs to ordinary fermions. This flavor dynamics will generically produce flavor-changing neutral currents and non-universal corrections to Z -> b b-bar. We show that the experimental constraints on the neutral D-meson mass difference imply that Λ\Lambda must be greater than of order 21 TeV. We also discuss bounds on Λ\Lambda from the constraints on extra contributions to the K_L - K_S mass difference and to the coupling of the Z boson to b-quarks. For theories defined about the infrared-stable Gaussian fixed-point, we estimate that this lower bound on Λ\Lambda yields an upper bound of approximately 460 GeV on the Higgs boson's mass, independent of the regulator chosen to define the theory.Comment: 11 pages, 2 embedded figures, LaTeX; references and discussion of CP violation adde

    Comparison of Variational Approaches for the Exactly Solvable 1/r-Hubbard Chain

    Full text link
    We study Hartree-Fock, Gutzwiller, Baeriswyl, and combined Gutzwiller-Baeriswyl wave functions for the exactly solvable one-dimensional 1/r1/r-Hubbard model. We find that none of these variational wave functions is able to correctly reproduce the physics of the metal-to-insulator transition which occurs in the model for half-filled bands when the interaction strength equals the bandwidth. The many-particle problem to calculate the variational ground state energy for the Baeriswyl and combined Gutzwiller-Baeriswyl wave function is exactly solved for the~1/r1/r-Hubbard model. The latter wave function becomes exact both for small and large interaction strength, but it incorrectly predicts the metal-to-insulator transition to happen at infinitely strong interactions. We conclude that neither Hartree-Fock nor Jastrow-type wave functions yield reliable predictions on zero temperature phase transitions in low-dimensional, i.e., charge-spin separated systems.Comment: 23 pages + 3 figures available on request; LaTeX under REVTeX 3.

    Minimal Composite Higgs Model with Light Bosons

    Full text link
    We analyze a composite Higgs model with the minimal content that allows a light Standard-Model-like Higgs boson, potentially just above the current LEP limit. The Higgs boson is a bound state made up of the top quark and a heavy vector-like quark. The model predicts that only one other bound state may be lighter than the electroweak scale, namely a CP-odd neutral scalar. Several other composite scalars are expected to have masses in the TeV range. If the Higgs decay into a pair of CP-odd scalars is kinematically open, then this decay mode is dominant, with important implications for Higgs searches. The lower bound on the CP-odd scalar mass is loose, in some cases as low as ∌\sim 100 MeV, being set only by astrophysical constraints.Comment: 33 pages, latex. Corrections in eqs. 3.21, 3.23, 4.1, 4.5-10. One figure adde

    Lattice gauge theory with baryons at strong coupling

    Get PDF
    We study the effective Hamiltonian for strong-coupling lattice QCD in the case of non-zero baryon density. In leading order the effective Hamiltonian is a generalized antiferromagnet. For naive fermions, the symmetry is U(4N_f) and the spins belong to a representation that depends on the local baryon number. Next-nearest-neighbor (nnn) terms in the Hamiltonian break the symmetry to U(N_f) x U(N_f). We transform the quantum problem to a Euclidean sigma model which we analyze in a 1/N_c expansion. In the vacuum sector we recover spontaneous breaking of chiral symmetry for the nearest-neighbor and nnn theories. For non-zero baryon density we study the nearest-neighbor theory only, and show that the pattern of spontaneous symmetry breaking depends on the baryon density.Comment: 31 pages, 5 EPS figures. Corrected Eq. (6.1

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore