343 research outputs found

    Разработка модели контейнера для сбора компактных люминесцентных ламп

    Get PDF
    Предложена конструкция контейнера для сбора у населения компактных люминесцентных ламп. Разработан и создан демонстрационный макет контейнера. Проверена его работоспособность.A container design is proposed for collecting compact fluorescent lamps from the city residents. A demonstration mock-up of the container was developed and created. It is checked up its working capacity

    The distribution of equivalent widths in long GRB afterglow spectra

    Full text link
    The extreme brightness of gamma-ray burst (GRB) afterglows and their simple spectral shape make them ideal beacons to study the interstellar medium of their host galaxies through absorption line spectroscopy. Using 69 low-resolution GRB afterglow spectra, we conduct a study of the rest-frame equivalent width (EW) distribution of features with an average rest-frame EW larger than 0.5 A. To compare an individual GRB with the sample, we develop EW diagrams as a graphical tool, and we give a catalogue with diagrams for the 69 spectra. We introduce a line strength parameter (LSP) that allows us to quantify the strength of the absorption features as compared to the sample by a single number. Using the distributions of EWs of single-species features, we derive the distribution of column densities by a curve of growth (CoG) fit. We find correlations between the LSP and the extinction of the GRB, the UV brightness of the host galaxies and the neutral hydrogen column density. However, we see no significant evolution of the LSP with the redshift. There is a weak correlation between the ionisation of the absorbers and the energy of the GRB, indicating that, either the GRB event is responsible for part of the ionisation, or that galaxies with high-ionisation media produce more energetic GRBs. Spectral features in GRB spectra are, on average, 2.5 times stronger than those seen in QSO intervening damped Lyman-alpha (DLA) systems and slightly more ionised. In particular we find larger excess in the EW of CIV1549 relative to QSO DLAs, which could be related to an excess of Wolf-Rayet stars in the environments of GRBs. From the CoG fitting we obtain an average number of components in the absorption features of GRBs of 6.00(-1.25,+1.00). The most extreme ionisation ratios in our sample are found for GRBs with low neutral hydrogen column density, which could be related to ionisation by the GRB emission.Comment: 37 pages, 31 figures, 15 tables. Accepted for publication in Astonomy and Astrophysic

    Searching for differences in Swift's intermediate GRBs

    Get PDF
    Gamma-ray bursts are usually classified through their high-energy emission into short-duration and long-duration bursts, which presumably reflect two different types of progenitors. However, it has been shown on statistical grounds that a third, intermediate population is needed in this classification scheme, although an extensive study of the properties of this class has so far not been done. The large amount of follow-up studies generated during the Swift era allows us to have a suficient sample to attempt a study of this third population through the properties of their prompt emission and their afterglows. Our study is focused on a sample of GRBs observed by Swift during its first four years of operation. The sample contains those bursts with measured redshift since this allows us to derive intrinsic properties. Intermediate bursts are less energetic and have dimmer afterglows than long GRBs, especially when considering the X-ray light curves, which are on average one order of magnitude fainter than long bursts. There is a less significant trend in the redshift distribution that places intermediate bursts closer than long bursts. Except for this, intermediate bursts show similar properties to long bursts. In particular, they follow the Epeak vs. Eiso correlation and have, on average, positive spectral lags with a distribution similar to that of long bursts. Like long GRBs, they normally have an associated supernova, although some intermediate bursts have shown no supernova component. This study shows that intermediate bursts are different from short bursts and, in spite of sharing many properties with long bursts, there are some differences between them as well. We suggest that the physical difference between intermediate and long bursts could be that for the first the ejecta are thin shells while for the latter they are thick shells.Comment: Accepted for publication in Astronomy and Astrophysics. 16 pages, 17 figures, 5 table

    A High Signal-to-Noise Ratio Composite Spectrum of Gamma-ray Burst Afterglows

    Full text link
    We present a composite spectrum of 60 long duration gamma-ray burst (GRB) afterglows with redshifts in the range 0.35<z<6.7 observed with low resolution optical spectra. The composite spectrum covers the wavelength range 700-6600 A in the rest frame and has a mean signal-to-noise ratio of 150 per 1 A pixel and reaches a maximum of ~300 in the range 2500-3500 A. Equivalent widths are measured from metal absorption lines from the Lya line to ~5200 A, and associated metal and hydrogen lines are identified between the Lyman break and Lya line. The average transmission within the Lyman forest is consistent with that found along quasar lines of sight. We find a temporal variation in fine structure lines when dividing the sample into bursts observed within 2 hours from their trigger and those observed later. Other lines in the predominantly neutral gas show variations too, but this is most likely a random effect caused by weighting of individual strong absorption lines and which mimics a temporal variation. Bursts characterized with high or low prompt GRB energy release produce afterglows with similar absorption line strengths, and likewise for bursts with bright or faint optical afterglows. Bursts defined as dark from their optical to X-ray spectral index have stronger absorption lines relative to the optically bright bursts. The composite spectrum has strong CaII and MgII absorption lines as commonly found in dusty galaxies, however, we find no evidence for dust or a significant molecular content based on the non-detection of diffuse interstellar bands. Compared to starburst galaxy spectra, the GRB composite has much stronger fine structure lines, while metal absorption lines are weaker.Comment: Accepted for publication in ApJ, 24 page

    In search of progenitors for supernova-less GRBs 060505 and 060614: re-examination of their afterglows

    Full text link
    GRB060505 and GRB060614 are nearby long-duration gamma-ray bursts (LGRBs) without accompanying supernovae (SNe) down to very strict limits. They thereby challenge the conventional LGRB-SN connection and naturally give rise to the question: are there other peculiar features in their afterglows which would help shed light on their progenitors? To answer this question, we combine new observational data with published data and investigate the multi-band temporal and spectral properties of the two afterglows. We find that both afterglows can be well interpreted within the framework of the jetted standard external shock wave model, and that the afterglow parameters for both bursts fall well within the range observed for other LGRBs. Hence, from the properties of the afterglows there is nothing to suggest that these bursts should have another progenitor than other LGRBs. Recently, Swift-discovered GRB080503 also has the spike + tail structure during its prompt gamma-ray emission seemingly similar to GRB060614. We analyse the prompt emission of this burst and find that this GRB is actually a hard-spike + hard-tail burst with a spectral lag of 0.8±\pm0.4 s during its tail emission. Thus, the properties of the prompt emission of GRB060614 and GRB080503 are clearly different, motivating further thinking of GRB classification. Finally we note that, whereas the progenitor of the two SN-less bursts remains uncertain, the core-collapse origin for the SN-less bursts would be quite certain if a wind-like environment can be observationally established, e.g, from an optical decay faster than the X-ray decay in the afterglow's slow cooling phase.Comment: 15 pages, 7 figures, 4 tables, ApJ in press; added Fig. 7 of the lag-luminosity relatio

    A photometric redshift of z=1.80.3+0.4z=1.8^{+0.4}_{-0.3} for the \agile GRB 080514B

    Get PDF
    Aims: The AGILE gamma-ray burst GRB 080514B is the first burst with detected emission above 30 MeV and an optical afterglow. However, no spectroscopic redshift for this burst is known. Methods: We compiled ground-based photometric optical/NIR and millimeter data from several observatories, including the multi-channel imager GROND, as well as ultraviolet \swift UVOT and X-ray XRT observations. The spectral energy distribution of the optical/NIR afterglow shows a sharp drop in the \swift UVOT UV filters that can be utilized for the estimation of a redshift. Results: Fitting the SED from the \swift UVOT uvw2uvw2 band to the HH band, we estimate a photometric redshift of z=1.80.3+0.4z=1.8^{+0.4}_{-0.3}, consistent with the pseudo redshift reported by Pelangeon & Atteia (2008) based on the gamma-ray data. Conclusions: The afterglow properties of GRB 080514B do not differ from those exhibited by the global sample of long bursts, supporting the view that afterglow properties are basically independent of prompt emission properties.Comment: submitted to A&A letter

    The Spectral Lag of GRB060505: A Likely Member of the Long Duration Class

    Full text link
    Two long gamma-ray bursts, GRB 060505 and GRB 060614, occurred in nearby galaxies at redshifts of 0.089 and 0.125 respectively. Due to their proximity and durations, deep follow-up campaigns to search for supernovae (SNe) were initiated. However none were found in either case, to limits more than two orders of magnitude fainter than the prototypical GRB-associated SN, 1998bw. It was suggested that the bursts, in spite of their durations (4 and 102 s), belonged to the population of short GRBs which has been shown to be unrelated to SNe. In the case of GRB 060614 this argument was based on a number of indicators, including the negligible spectral lag, which is consistent with that of short bursts. GRB 060505 has a shorter duration, but no spectral lag was measured. We present the spectral lag measurements of GRB 060505 using Suzakus Wide Area Monitor and the Swift Burst Alert Telescope. We find that the lag is 0.36+/- 0.05 s, inconsistent with the lags of short bursts and consistent with the properties of long bursts and SN-GRBs. These results support the association of GRB 060505 with other low-luminosity GRBs also found in star-forming galaxies and indicates that at least some massive stars may die without bright SNe.Comment: Accepted by ApJL, 5 pages, 3 Figure

    GRB 021004: Tomography of a gamma-ray burst progenitor and its host galaxy

    Get PDF
    We analyse the distribution of matter around the progenitor star of gamma-ray burst GRB 021004 as well as the properties of its host galaxy with high-resolution echelle as well as near-infrared spectroscopy. Observations were taken by the 8.2m Very Large Telescope with the Ultraviolet and Visual Echelle spectrograph (UVES) and the Infrared Spectrometer And Array Camera (ISAAC) between 10 and 14 hours after the onset of the event. We report the first detection of emission lines from a GRB host galaxy in the near-infrared, detecting H-alpha and the [O III] doublet. These allow an independent measurement of the systemic redshift (z = 2.3304 +/- 0.0005) which is not contaminated by absorption as the Ly-alpha line is, and the deduction of properties of the host galaxy. From the visual echelle spectroscopy, we find several absorption line groups spanning a range of about 3,000 km/s in velocity relative to the redshift of the host galaxy. The absorption profiles are very complex with both velocity-broadened components extending over several 100 km/s and narrow lines with velocity widths of only 20 km/s. By analogy with QSO absorption line studies, the relative velocities,widths, and degrees of ionization of the lines ("line-locking", "ionization--velocity correlation") show that the progenitor had both an extremely strong radiation field and several distinct mass loss phases (winds). These results are consistent with GRB progenitors being massive stars, such as Luminous Blue Variables (LBVs) or Wolf--Rayet stars, providing a detailed picture of the spatial and velocity structure of the GRB progenitor star at the time of explosion. The host galaxy is a prolific star-forming galaxy with a SFR of about 40 solar masses per year.Comment: 11 pages, 5 figures. Accepted for publication in Astronomy and Astrophysics

    Challenging GRB models through the broadband dataset of GRB060908

    Get PDF
    Context: Multiwavelength observations of gamma-ray burst prompt and afterglow emission are a key tool to disentangle the various possible emission processes and scenarios proposed to interpret the complex gamma-ray burst phenomenology. Aims: We collected a large dataset on GRB060908 in order to carry out a comprehensive analysis of the prompt emission as well as the early and late afterglow. Methods: Data from Swift-BAT, -XRT and -UVOT together with data from a number of different ground-based optical/NIR and millimeter telescopes allowed us to follow the afterglow evolution from about a minute from the high-energy event down to the host galaxy limit. We discuss the physical parameters required to model these emissions. Results: The prompt emission of GRB060908 was characterized by two main periods of activity, spaced by a few seconds of low intensity, with a tight correlation between activity and spectral hardness. Observations of the afterglow began less than one minute after the high-energy event, when it was already in a decaying phase, and it was characterized by a rather flat optical/NIR spectrum which can be interpreted as due to a hard energy-distribution of the emitting electrons. On the other hand, the X-ray spectrum of the afterglow could be fit by a rather soft electron distribution. Conclusions: GRB060908 is a good example of a gamma-ray burst with a rich multi-wavelength set of observations. The availability of this dataset, built thanks to the joint efforts of many different teams, allowed us to carry out stringent tests for various interpretative scenarios showing that a satisfactorily modeling of this event is challenging. In the future, similar efforts will enable us to obtain optical/NIR coverage comparable in quality and quantity to the X-ray data for more events, therefore opening new avenues to progress gamma-ray burst research.Comment: A&A, in press. 11 pages, 5 figure

    Taxonomy of GRB optical light-curves: identification of a salient class of early afterglows

    Full text link
    The temporal behaviour of the early optical emission from Gamma-Ray Burst afterglows can be divided in four classes: fast-rising with an early peak, slow-rising with a late peak, flat plateaus, and rapid decays since first measurement. The fast-rising optical afterglows display correlations among peak flux, peak epoch, and post-peak power-law decay index that can be explained with a structured outflow seen off-axis, but the shock origin (reverse or forward) of the optical emission cannot be determined. The afterglows with plateaus and slow-rises may be accommodated by the same model, if observer location offsets are larger than for the fast-rising afterglows, or could be due to a long-lived injection of energy and/or ejecta in the blast-wave. If better calibrated with more afterglows, the peak flux-peak epoch relation exhibited by the fast and slow-rising optical light-curves could provide a way to use this type of afterglows as standard candles.Comment: 8 pages, submitted to MNRA
    corecore