24 research outputs found

    Third Stable Branch and Tristability of Nuclear Spin Polarization in Single Quantum Dot System

    Get PDF
    Semiconductor quantum dots provide a spin-coupled system of an electron and nuclei via enhanced hyperfine interaction. We showed that the nuclear spin polarization in single quantum dots can have three stable branches under a longitudinal magnetic field. The states were accompanied by hysteresis loops around the boundaries of each branch with a change in the excitation condition. To explain these findings, we incorporated the electron spin relaxation caused by the nuclear spin fluctuation into the previously-studied dynamic nuclear spin polarization mechanism. The model reproduces the new features of nuclear spin polarization and the associated strong reduction in the observed electron spin polarization, and can refer to the tristability of nuclear spin polarization.Comment: 5 pages, 3 figure

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Influence of a Longitudinal Field on the Large In-Plane Nuclear Field Formation in Single Quantum Dots

    Get PDF
    Experimental studies on the role of nuclear quadrupole interaction (NQI) to the in-plane nuclear field formation are performed in single self-assembled In0.75Al0.25As/Al0.3Ga0.7As quantum dots (QDs). In Hanle-effect measurements, the electron depolarization curves deviating far from a standard Lorentzian shape are observed: the curves with anomalously large width and hysteretic behavior at the critical transverse magnetic field. These anomalies indicate the growth of an in-plane nuclear field compensating the applied transverse magnetic field up to approximate to 1 T and appear regardless of the excitation helicity. The azimuth angle dependence of the critical field of the hysteretic response reveals that the principal axis of the NQI is almost parallel to the crystal growth axis. This fact suggests that the main origin of the NQI which is related with in-plane nuclear-field formation is not random alloying among In and Al nuclei but residual strain of QDs. Furthermore, a longitudinal magnetic field by a neodymium magnet breaks the excitation-helicity independence of the Hanle curves and the shape of curves becomes very different depending on the helicity. The obtained results are explained well with a simple consideration and indicate that the NQI takes multirole in the formation of in-plane nuclear field

    Investigation of Population Dynamics in 1.54-μm Telecom Transitions of Epitaxial (ErxSc1-x)2O3 Thin Layers for Coherent Population Manipulation: Weak Excitation Regime

    No full text
    We have investigated the energy transfers in the 1.54- μ m region of (Er,Sc) 2 O 3 epitaxial thin films grown on Si(111). The interplay of the energy transfers between Er ions in the different and the same symmetry sites makes the dynamics complicated. To suppress the energy transfer upconversion, low power and resonant excitation of the third crystal-field level ( 4 I 13 / 2 : Y 3 ′ ) of the Er 3 + site with C 3 i symmetry was employed. The time-resolved photoluminescence measurements of the Y 1 ′ - Z 1 ′ transition indicate the existence of two decay components having fast (10–100 μ s) and slow (0.1–1 ms) relaxation times in the range of 4–60 K. The model calculation including the inter-site energy transfers, the temperature-sensitive and -insensitive non-radiative relaxations fits the experimental results well. Moreover, the long averaged inter-Er 3 + distance obtained by decreasing Er concentration was found to reduce two kinds of non-radiative relaxation rates and the energy transfer rates between Er ions very effectively
    corecore