70 research outputs found

    Climacteric Lowers Plasma Levels of Platelet-Derived Microparticles: A Pilot Study in Pre-versus Postmenopausal Women

    Get PDF
    Background: Climacteric increases the risk of thrombotic events by alteration of plasmatic coagulation. Up to now, less is known about changes in platelet-(PMP) and endothelial cell-derived microparticles (EMP). Methods: In this prospective study, plasma levels of microparticles (MP) were compared in 21 premenopausal and 19 postmenopausal women. Results: No altered numbers of total MP or EMP were measured within the study groups. However, the plasma values of CD61-exposing MP from platelets/megakaryocytes were higher in premenopausal women (5,364 x 10(6)/l, range 4,384-17,167) as compared to postmenopausal women (3,808 x 10(6)/l, range 2,009-8,850; p = 0.020). This differentiation was also significant for the subgroup of premenopausal women without hormonal contraceptives (5,364 x 10(6)/l, range 4,223-15,916; p = 0.047; n = 15). Furthermore, in premenopausal women, higher plasma levels of PMP exposing CD62P were also present as compared to postmenopausal women (288 x 10(6)/l, range 139-462, vs. 121 x 10(6)/l, range 74-284; p = 0.024). This difference was also true for CD63+ PMP levels (281 x 10(6)/l, range 182-551, vs. 137 x 10(6)/l, range 64-432; p = 0.015). Conclusion: Climacteric lowers the level of PMP but has no impact on the number of EMP in women. These data suggest that PMP and EMP do not play a significant role in enhancing the risk of thrombotic events in healthy, postmenopausal women. Copyright (C) 2012 S. Karger AG, Base

    Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain

    Get PDF
    Azo dyes are toxic, highly persistent, and ubiquitously distributed in the environments. The large-scale production and application of azo dyes result in serious environmental pollution of water and sediments. Bacterial azo reduction is an important process for removing this group of contaminants. Recent advances in this area of research reveal that azo reduction by Shewanella strains is coupled to the oxidation of electron donors and linked to the electron transport and energy conservation in the cell membrane. Up to date, several key molecular components involved in this reaction have been identified and the primary electron transportation system has been proposed. These new discoveries on the respiration pathways and electron transfer for bacterial azo reduction has potential biotechnological implications in cleaning up contaminated sites

    Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies

    Get PDF
    Antibodies specific for histone post-translational modifications (PTMs) have been central to our understanding of chromatin biology. Here, we describe an unexpected and novel property of histone H4 site-specific acetyl antibodies in that they prefer poly-acetylated histone substrates. By all current criteria, these antibodies have passed specificity standards. However, we find these site-specific histone antibodies preferentially recognize chromatin signatures containing two or more adjacent acetylated lysines. Significantly, we find that the poly-acetylated epitopes these antibodies prefer are evolutionarily conserved and are present at levels that compete for these antibodies over the intended individual acetylation sites. This alarming property of acetyl-specific antibodies has far-reaching implications for data interpretation and may present a challenge for the future study of acetylated histone and non-histone proteins

    The Type III Secreted Protein BspR Regulates the Virulence Genes in Bordetella bronchiseptica

    Get PDF
    Bordetella bronchiseptica is closely related with B. pertussis and B. parapertussis, the causative agents of whooping cough. These pathogenic species share a number of virulence genes, including the gene locus for the type III secretion system (T3SS) that delivers effector proteins. To identify unknown type III effectors in Bordetella, secreted proteins in the bacterial culture supernatants of wild-type B. bronchiseptica and an isogenic T3SS-deficient mutant were compared with iTRAQ-based, quantitative proteomic analysis method. BB1639, annotated as a hypothetical protein, was identified as a novel type III secreted protein and was designated BspR (Bordetella secreted protein regulator). The virulence of a BspR mutant (ΔbspR) in B. bronchiseptica was significantly attenuated in a mouse infection model. BspR was also highly conserved in B. pertussis and B. parapertussis, suggesting that BspR is an essential virulence factor in these three Bordetella species. Interestingly, the BspR-deficient strain showed hyper-secretion of T3SS-related proteins. Furthermore, T3SS-dependent host cell cytotoxicity and hemolytic activity were also enhanced in the absence of BspR. By contrast, the expression of filamentous hemagglutinin, pertactin, and adenylate cyclase toxin was completely abolished in the BspR-deficient strain. Finally, we demonstrated that BspR is involved in the iron-responsive regulation of T3SS. Thus, Bordetella virulence factors are coordinately but inversely controlled by BspR, which functions as a regulator in response to iron starvation

    Exploring diurnal variation using piecewise linear splines:an example using blood pressure

    Get PDF
    Background: There are many examples of physiological processes that follow a circadian cycle and researchers are interested in alternative methods to illustrate and quantify this diurnal variation. Circadian blood pressure (BP) deserves additional attention given uncertainty relating to the prognostic significance of BP variability in relation to cardiovascular disease. However, the majority of studies exploring variability in ambulatory blood pressure monitoring (ABPM) collapse the data into single readings ignoring the temporal nature of the data. Advanced statistical techniques are required to explore complete variation over 24 h. Methods: We use piecewise linear splines in a mixed-effects model with a constraint to ensure periodicity as a novel application for modelling daily blood pressure. Data from the Mitchelstown Study, a cross-sectional study of Irish adults aged 47–73 years (n = 2047) was utilized. A subsample (1207) underwent 24-h ABPM. We compared patterns between those with and without evidence of subclinical target organ damage (microalbuminuria). Results: We were able to quantify the steepest rise and fall in SBP, which occurred just after waking (2.23 mmHg/30 min) and immediately after falling asleep (−1.93 mmHg/30 min) respectively. The variation about an individual’s trajectory over 24 h was 12.3 mmHg (standard deviation). On average those with microalbuminuria were found to have significantly higher SBP (7.6 mmHg, 95% CI 5.0–10.1) after adjustment for age, sex and BMI. Including an interaction term between each linear spline and microalbuminuria did not improve model fit. Conclusion: We have introduced a practical method for the analysis of ABPM where we can determine the rate of increase or decrease for different periods of the day. This may be particularly useful in examining chronotherapy effects of antihypertensive medication. It offers new measures of short-term BP variability as we can quantify the variation about an individual’s trajectory but also allows examination of the variation in slopes between individuals (random-effects)

    Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    Get PDF
    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems

    Mining the human phenome using allelic scores that index biological intermediates

    Get PDF
    J. Kaprio ja M-L. Lokki työryhmien jäseniä.It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.Peer reviewe
    corecore