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Abstract IgG4 is the least abundant IgG subclass in human
serum, representing less than 5% of all IgG. Increases in IgG4
occur following chronic exposure to antigen and are generally
associated with states of immune tolerance. In line with this,
IgG4 is regarded as an anti-inflammatory antibody with a
limited ability to elicit effective immune responses.
Furthermore, IgG4 attenuates allergic responses by inhibiting
the activity of IgE. The mechanism by which IgG4 inhibits
IgE-mediated hypersensitivity has been investigated using a
variety of model systems leading to two proposed mecha-
nisms. First by sequestering antigen, IgG4 can function as a
blocking antibody, preventing cross-linking of receptor bound
IgE. Second IgG4 has been proposed to co-stimulate the in-
hibitory IgG receptor FcγRIIb, which can negatively regulate
FcεRI signaling and in turn inhibit effector cell activation.
Recent advances in our understanding of the structural fea-
tures of human IgG4 have shed light on the unique functional
and immunologic properties of IgG4. The aim of this review is
to evaluate our current understanding of IgG4 biology and

reassess the mechanisms by which IgG4 functions to inhibit
IgE-mediated allergic responses.
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Introduction

The identification of four distinct subclasses of human IgG
was first described during the 1960s, when they were desig-
nated as IgG1, IgG2, IgG3 and IgG4, based on their relative
concentrations in human serum [1–3]. IgG4was notable as the
least abundant IgG subclass with an average serum concentra-
tion of 0.4 mg/ml, compared to 8 mg/ml for IgG1. In addition,
unlike the other IgG subclasses, IgG4 is unable to fix comple-
ment or precipitate antigens. IgG4 is comprised of two iden-
tical 50-kDa heavy chains each consisting of four distinct
immunoglobulin domains (VH, CH1, CH2 and CH3) and
two identical 25-kDa light chains each consisting of two im-
munoglobulin domains (VL and CL). The 12 amino acid
hinge region between CH1 and CH2 provides mobility of
the variable Fab regions in relation to the Fc region, facilitat-
ing binding of antigen. All of the IgG subclasses share a high
degree of sequence homology, but key differences in the hinge
region and Cγ2 domain give rise to important variations in
effector function.

IgG antibodies interact with immune cells through binding
to Fcγ receptors expressed on cell surfaces [4•]. With the
exception of the neonatal Fcγ receptor (FcγRn), which binds
at the Cγ2-Cγ3 interface and functions primarily to transport
IgG across placental and mucosal surfaces, all Fcγ receptors
bind at the N-terminus of Cγ2. There are seven Fcγ receptors
in humans (Table 1); FcγRI has the highest overall affinity for
IgG and can bind monomeric antibody. This high affinity
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means that FcγRI is saturated with IgG, although similar to
the high affinity IgE receptor FcεRI, signaling only occurs
following antigen cross-linking [5]. The other Fcγ receptors
generally have lower affinity (100–1000-fold less) for IgG
subclasses and hence bind only to immune complexes and
not to monomeric antibody.

IgG4 binds to all of the Fcγ receptors with the exception of
FcγRIIIb (Table 1), which contains a membrane anchored
GPI domain and thus cannot induce intracellular signaling
[6]. FcγRI and FcγRIIIa both associate with the common γ
chain, which contains an intracellular immunoreceptor
tyrosine-based activation motif (ITAM), driving cellular acti-
vation upon receptor engagement. FcγRIIa and FcγRIIc are
single-chain activating receptors and also possess an ITAM in
their intracellular domains. Signaling through activated Fcγ
receptors promotes a range of effector functions including
internalization of Fc-bound immune complexes, enhanced
antigen-presentation, antibody-dependent cell-mediated cyto-
toxicity (ADCC) and cellular activation [7•, 8]. In contrast,
FcγRIIb is a single-chain inhibitory receptor, the only inhib-
itory Fcγ receptor in humans, possessing an immunoreceptor
tyrosine-based inhibition motif (ITIM) in the intracellular do-
main. IgG4 is the only IgG subclass that can bind with equal
affinity to both FcγRIIb and the activating receptors.
Co-ligation of FcγRIIb with activating Fcγ receptors results
in inhibition of effector cell responses [9]. FcγRIIb also plays
an important role in regulation of B cell activity and plasma
cell survival [10].

The crystal structure of human IgG4 Fc was first solved in
1997 in complex with an IgM rheumatoid factor [11]. More
recently, a higher resolution structure of IgG4-Fc was solved,
providing further insights into the unique structural features of
IgG4 [12••]. Notably, conformational differences in two key
loop structures in the Cγ2 domain of IgG4 compared to IgG1
provide a structural basis for the lower binding affinity of
IgG4 to some of the Fcγ receptors and the inability of IgG4
to bind the complement component C1q.

Fab Arm Exchange

Cysteine residues in the hinge region of IgG4 result in
intra-heavy chain disulphide bonds, as opposed to the
inter-heavy chain bonds present in the other IgG subclasses.
In addition, a key amino acid substitution in the Cγ3:Cγ3
interface weakens the domain interactions. Under reducing
conditions, the combined effect allows dissociation of the
two heavy chains of human IgG4 into half-molecules [13].
Re-association of half-molecules originating from different
IgG4 antibodies results in ‘bi-specific’monovalent antibodies.
IgG4 antibodies that have undergone this process are conse-
quently unable to undergo antigen cross-linking to form im-
mune complexes. Analysis of serum from healthy human sub-
jects revealed that 20–30 % of monomeric IgG4 contained
both κ and λ light chains within the same molecule, demon-
strating that Fab arm exchange occurs in vivo in a substantial
fraction of IgG4 [14•].

IgG4 Production

Naïve B cells express IgM as a monomeric membrane-bound
B cell receptor (BCR). Activation of naïve B cells through the
BCR can lead to rearrangement of the immunoglobulin heavy
chain locus through class switch recombination. This results
in the expression of a different ‘switched’ isotype (IgG, IgA or
IgE), dependent on additional signals provided by cytokines.
Class switch recombination to IgG4 depends on the produc-
tion of the Th2 cytokines IL-4 and IL-13, along with ligation
of CD40 [15, 16]. These same signals (IL-4 plus CD40L)
classically drive class switch recombination to IgE, the prima-
ry effector antibody involved in allergic disease [17]. There is
a clear biological relationship between IgG4 and IgE produc-
tion, although the molecular mechanisms that dictate recom-
bination to IgG4 versus IgE have yet to be fully elucidated
[18]. The addition of IL-10 [19] or IL-21 [20] to in vitro

Table 1 Cellular expression and relative binding affinities of human Fcγ receptors

Receptor Cellular expression IgG1 IgG2 IgG3 IgG4

FcγRI/CD64 Monocytes, macrophages, DC, neutrophilsa, mast cellsa ++++ – ++++ ++++

FcγRIIa/CD32a Monocytes, macrophages, DC, basophils, mast cells, eosinophils, platelets +++ ++ +++ ++

FcγRIIb/CD32b B cells, DC, basophils, neutrophils subsets of monocytes and macrophages + – ++ +

FcγRIIc/CD32c NK cells, monocytes, macrophages and neutrophils + – ++ +

FcγRIIIa/CD16a Natural killer (NK) cells, monocytes and macrophages +++ +/- ++++ +/-

FcγRIIIb/CD16b Neutrophils subsets of basophils +++ – +++ –

FcγRn Monocytes, macrophages, DC, neutrophils, epithelial cells, endothelial cells ++++ ++++ ++++ ++++

There are two polymorphic variants of FcγRIIa (131H and 131R) with similar binding properties. FcγRIIIa has two polymorphic variants (158Vand
158F). IgG2 and IgG4 bind only to FcγRIIIa158V and only as immune complexes, whereas IgG1 and IgG3 bind to both variants with high affinity [6].
IgG binding to FcγRn only occurs at pH< 6.5 but it binds to all IgG subclasses [60]
a Induced following activation
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cultures can enhance or suppress the production of both IgG4
and IgE depending on the conditions under which B cells are
stimulated. Although IL-10-producing B cells are reported to
produce increased amounts of IgG4 in culture compared to
IL-10− B cells [21], IgG4+ B cells express equivalent amounts
of IL-10 to their IgG1+ counterparts [22••]. This suggests that
while IL-10 can influence the production of IgG4, IgG4+ B
cells themselves are not the major source of this cytokine.
Circulating IgG4+ B cells from healthy individuals have a
similar but distinct phenotype to IgG1+ B cells: they lack
surface IgD but express CD27, consistent with the phenotype
of class-switched memory B cells [22••]. Expression of the
complement receptor CD21 (CR2) is lower on IgG4+ B cells
compared to IgG1+ B cells from the same individuals. CD21
forms part of the B cell receptor-signaling complex along with
CD19 and CD81 and also has an important role in internali-
zation of immune complexes [23]. Hence, lower expression of
CD21 may result in reduced responsiveness to antigen and/or
immune complexes. Furthermore, Lighaam and colleagues
[22••] reported increased expression of the IgE receptor,
CD23 (FcεRII) on IgG4+ versus IgG1+ B cells. CD23 expres-
sion is up-regulated by IL-4, an important switch factor for
IgG4, again highlighting the close association between IgG4
and IgE.

IgG4 and the Modified Th2 Response

An important feature of IgG4 production is the association
with high-dose chronic antigen exposure. The production of
allergen-specific IgG4 is linked to the ‘modified Th2 hypoth-
esis’, whereby an allergen-driven Th2 response in which IgG4
dominates and IgE is absent results in protection from imme-
diate hypersensitivity [24]. This was first described by
Platts-Mills and colleagues who demonstrated that children
exposed to high concentrations of the major cat allergen, Fel
d 1, had high titers of Fel d 1-specific IgG4 and were clinically
tolerant (ie not cat allergic) [25]. Similarly, high titers of
allergen-specific IgG4 are observed following chronic expo-
sure to other exogenous antigens including occupational aller-
gens [26] and bee venom [27]. Thus, the balance between
IgG4 and IgE production appears to critically influence the
development of allergic hypersensitivity versus immune
tolerance. Importantly, studies of IgG4-induced antibody
responses in allergen immunotherapy (AIT) demonstrate that
IgG4 is capable of directly inhibiting the activity of IgE.

IgG4 and Allergen Immunotherapy

AIT is an effective treatment for IgE-mediated allergy and
induces long-term clinical tolerance, associated with increases
in IL-10-producing T regulatory cells and reductions in baso-
phil reactivity [28]. The observation that IgG4 responses are
associated with chronic high-dose natural allergen exposure is

consistent with the effect of AIT—involving repeated admin-
istration of high-dose subcutaneous, sublingual or oral aller-
gen over years—in inducing allergen-specific IgG4 [29–31].
The concept that treatment-induced IgG antibodies could pro-
vide protection from immediate hypersensitivity emerged ear-
ly in the history of AIT. Pre-dating even the discovery of IgE,
Cooke and Loveless demonstrated that post-immunotherapy
serum could inhibit in vivo Prausnitz-Küstner reactions [32].
In 1982, Golden et al. demonstrated that titers of venom-
specific IgG were significantly higher in patients who were
successfully treated with venom immunotherapy, whereas
treatment failure was associated with lower levels of specific
IgG [33]. This led to the theory that specific IgG levels could
correlate with the clinical response to treatment. During this
time, it was established that despite initial low levels in serum,
AIT appeared to stimulate marked increases in allergen-
specific IgG4 [34]. However, data from certain clinical trials
raised doubts regarding the relevance of allergen-specific
IgG4 to the clinical benefit of AIT since high levels of
allergen-specific IgG4 were associated with treatment failure
rather than success [35].

Inhibition of IgE Activity by IgG4

Definitive evidence that IgG is able to inhibit IgE activity was
provided by Van Neerven and colleagues who reported that
AIT-induced IgG could inhibit IgE-facilitated allergen presen-
tation (IgE-FAP) by B cells to T cells in vitro [36]. Later
similar studies went on to show that this ‘blocking activity’
co-eluted with IgG4 [37, 38]. IgE-FAP depends on the binding
of immune complexes formed of allergen and specific IgE to
the low-affinity IgE receptor CD23 (FcεRII). Capture of
IgE-allergen complexes by CD23-expressing antigen-
presenting cells results in internalization and processing of
the allergen-IgE-receptor complex with subsequent presenta-
tion of allergen-derived peptides to T cells [39]. The ability
of IgG4 antibodies to inhibit this process relies entirely on
the affinity, specificity and quantity of the blocking antibody,
regardless of isotype or subclass [40, 41•]. Conventional sub-
cutaneous immunotherapy induces significant increases in
allergen-specific IgG4 6–8 weeks following the start of treat-
ment [29]. This corresponds with the appearance of IgE-FAP
inhibitory activity in serum but is preceded by increases in
allergen-driven IL-10 production by peripheral blood mono-
nuclear cells. The functional inhibitory activity of IgG4 ap-
pears to relate more closely to the clinical efficacy of AIT than
absolute levels in serum, which may explain why levels of
IgG4 often correlate poorly with clinical responses. In a ran-
domized double-blind placebo controlled trial of subcutane-
ous grass pollen immunotherapy, continued clinical remission
2 years after treatment withdrawal was accompanied by
persisting inhibitory antibody activity in serum against
IgE-FAP [38]. Although the levels of serum allergen-specific
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IgG4 fell to near pretreatment values during the 2 years of
treatment withdrawal, depletion experiments identified IgG4
as the main source of the continuing inhibitory activity. This
study indicates that the activity but not quantity of IgG4 anti-
bodies per se is the main determinant of clinically relevant IgE
inhibition (Fig. 1).

In addition to inhibiting CD23-dependent IgE activi-
ty, IgG4 can also block the effects of IgE signaling
through FcεR1, and in turn inhibit immediate hypersen-
sitivity. For example, IgG4 purified from the serum of
an immunotherapy- t rea ted individual inhibi ted
IgE-mediated basophil degranulation, which depends on
cross-linking of high-affinity IgE receptor (FcεRI)
-bound IgE [42]. The ability of IgG4 to inhibit
FcεRI-dependent activity of IgE has been proposed to
arise through two possible mechanisms; either through
direct competition for allergen with receptor-bound IgE
and/or through simultaneous binding of IgG4 to the in-
hibitory FcγRIIb. A high-affinity monoclonal IgG4 an-
tibody specific for the grass pollen allergen Phl p 7 was
able to inhibit IgE-mediated basophil degranulation in
vitro [43]. In order to determine whether this activity
was subclass-dependent, a panel of antibodies with
identical specificity but different subclasses, namely
IgG1, IgG2, IgG3, IgA1 and IgA2, was generated
[41•]. The antibody specificity was found to be the
critical determinant of the inhibitory activity, since each
subclass was able to block basophil activation to an
equal degree. Thus, any antibody isotype with sufficient
affinity for allergen has the potential to effectively prevent
cross-linking of IgE receptors though competition with IgE
for allergen binding.

IgG4 and FcγRIIb-Mediated Inhibition of IgE

Using a bi-specific antibody, Kepley and colleagues dem-
onstrated that cross-linking of FcγRIIb and FcεRI inhibits
IgE-mediated basophil activation [44]. The role of
FcγRIIb in the inhibitory effect of AIT serum on basophil
degranulation has been the subject of conflicting reports
in the literature. In two independent studies using similar
methodologies, the inhibitory activity of AIT serum on
basophil activation was investigated by pre-incubation of
basophils with antibodies to block human FcγRII.
Whereas one study found that pre-incubation attenuated
the inhibitory effect of AIT serum leading to increased
basophil activation [45], the other study reported that
FcγRII blockade had no effect on the inhibition of
IgE-mediated basophil degranulation by AIT serum de-
spite successful inhibition of IgG complex binding [46].
These two studies used different anti-FcγRII antibody
clones, although neither was able to discriminate between
the activating (FcγRIIa) and inhibitory (FcγRIIb)

receptors expressed by human basophils. The direct ef-
fects of these antibodies on basophil function, e.g. activa-
tion by signaling through FcγRIIa, were not investigated
but may have influenced the experimental outcomes. A
further single report used two monoclonal antibodies se-
lective for FcγRIIa and FcγRIIb, respectively, to assess
the role of these receptors in IgG-mediated inhibition of
basophil reactivity [47]. Intriguingly, the authors found
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Fig. 1 Continued reduction in symptom and medication scores 2 years
after withdrawal of grass pollen immunotherapy is accompanied by
persisting IgG4-mediated inhibitory activity against IgE-FAP. a
Symptom and medication scores at baseline, after 2 years of allergen
immunotherapy and 2 years after stopping treatment. b Inhibition of
IgE-FAP by sera taken at baseline, after 2 years of allergen
immunotherapy and 2 years after stopping treatment. c Serum grass
pollen-specific IgG4 measured by ELISA at baseline, after 2 years of
allergen immunotherapy and 2 years after stopping treatment. d
Inhibition of IgE-FAP by mock-depleted or IgG4-depleted serum taken
after 2 years of allergen immunotherapy. e Inhibition of IgE-FAP by
mock-depleted or IgG4-depleted serum taken 2 years after stopping
treatment. Figure reproduced with permission from Reference 38
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that blocking either FcγRIIa or FcγRIIb attenuated the
inhibitory activity of IgG from AIT serum, although as
with previous studies, the direct effect of these monoclo-
nal antibodies on basophil activation was not assessed
[47].

The potential for interaction of allergen-specific IgG4
and FcγRIIb to result in effective inhibition of FcεRI
signaling remains uncertain. Using surface plasmon res-
onance, Bruhns and colleagues found that IgG4 bound
to FcγRIIb with moderate affinity (KA 2 × 105 M−1) and
when IgG4 antibodies were aggregated as F(ab′)2 com-
plexes, binding to FcγRIIb was detected on cell sur-
faces [6]. However, human IgG4 does not precipitate
antigen and forms only small immune complexes com-
pared to IgG1 [48], likely due to the dynamic process
of Fab arm exchange [49]. This may have significant
functional consequences for interactions between IgG4
and FcγRIIb, which have yet to be examined experi-
mentally. Furthermore, the potential biological relevance
of this pathway must also be considered, since although
FcγRIIb is constitutively expressed by basophils, ex-
pression on mast cells is variable depending on tissue
distribution; while peripheral blood [50], cord-blood de-
rived [51] and synovial mast cells [52] all express
FcγRIIb, expression has not been demonstrated on hu-
man skin mast cells [53] or intestinal mast cells from
most individuals [54]. Therefore, at least in the skin and
intestine, the potential relevance of IgG-mediated inhi-
bition of mast cell activation through FcγRIIb pathways
must be questioned.

Conclusions

IgG4 is closely associated to the production of IgE and there-
fore has relevance to the study of allergic disease. Absolute
levels of IgG4 often fail to correlate with clinical tolerance,
although absolute levels of IgE are similarly poorly predictive
of disease severity. Nonetheless, the biological activity of
IgG4, in particular the potent inhibition of IgE-mediated
basophil/mast cell activation and antigen presentation, suggest
that this unique subclass is indeed relevant to disease expres-
sion. IgG4 has a long association with tolerance to
aeroallergens, both in studies of allergen immunotherapy
and the so-called modified Th2 response. An accumulating
body of literature also supports a potential wider role for
IgG4 in oral immunotherapy studies of food allergy [55] and
also in natural tolerance to food allergens [56–59].
Experimental approaches need to be developed to address
unresolved questions concerning IgG4 biology, such as iden-
tification of factors that regulate IgG4 versus IgE responses.
Understanding the precise molecular determinants that
control the fate of IgG4 versus IgE switching could

highlight therapeutic targets for prevention of allergy
and promotion of clinical tolerance.
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