433 research outputs found

    Explicit kinetic heterogeneity: mechanistic models for interpretation of labeling data of heterogeneous cell populations

    Get PDF
    Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three models that are most commonly used are in fact mathematically identical and differ only in their interpretation of the estimated parameters. By extending these previous models, we here propose a more mechanistic approach for the analysis of data from deuterium labeling experiments. We construct a model of "kinetic heterogeneity" in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a mechanistic way of interpreting labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data with variable labeling length

    Generation and quality control of lipidomics data for the alzheimers disease neuroimaging initiative cohort.

    Get PDF
    Alzheimers disease (AD) is a major public health priority with a large socioeconomic burden and complex etiology. The Alzheimer Disease Metabolomics Consortium (ADMC) and the Alzheimer Disease Neuroimaging Initiative (ADNI) aim to gain new biological insights in the disease etiology. We report here an untargeted lipidomics of serum specimens of 806 subjects within the ADNI1 cohort (188 AD, 392 mild cognitive impairment and 226 cognitively normal subjects) along with 83 quality control samples. Lipids were detected and measured using an ultra-high-performance liquid chromatography quadruple/time-of-flight mass spectrometry (UHPLC-QTOF MS) instrument operated in both negative and positive electrospray ionization modes. The dataset includes a total 513 unique lipid species out of which 341 are known lipids. For over 95% of the detected lipids, a relative standard deviation of better than 20% was achieved in the quality control samples, indicating high technical reproducibility. Association modeling of this dataset and available clinical, metabolomics and drug-use data will provide novel insights into the AD etiology. These datasets are available at the ADNI repository at http://adni.loni.usc.edu/

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces

    Atypical AT Skew in Firmicute Genomes Results from Selection and Not from Mutation

    Get PDF
    The second parity rule states that, if there is no bias in mutation or selection, then within each strand of DNA complementary bases are present at approximately equal frequencies. In bacteria, however, there is commonly an excess of G (over C) and, to a lesser extent, T (over A) in the replicatory leading strand. The low G+C Firmicutes, such as Staphylococcus aureus, are unusual in displaying an excess of A over T on the leading strand. As mutation has been established as a major force in the generation of such skews across various bacterial taxa, this anomaly has been assumed to reflect unusual mutation biases in Firmicute genomes. Here we show that this is not the case and that mutation bias does not explain the atypical AT skew seen in S. aureus. First, recently arisen intergenic SNPs predict the classical replication-derived equilibrium enrichment of T relative to A, contrary to what is observed. Second, sites predicted to be under weak purifying selection display only weak AT skew. Third, AT skew is primarily associated with largely non-synonymous first and second codon sites and is seen with respect to their sense direction, not which replicating strand they lie on. The atypical AT skew we show to be a consequence of the strong bias for genes to be co-oriented with the replicating fork, coupled with the selective avoidance of both stop codons and costly amino acids, which tend to have T-rich codons. That intergenic sequence has more A than T, while at mutational equilibrium a preponderance of T is expected, points to a possible further unresolved selective source of skew

    The effect of blue light exposure in an ocular melanoma animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uveal melanoma (UM) cell lines, when exposed to blue light in vitro, show a significant increase in proliferation. In order to determine if similar effects could be seen in vivo, we investigated the effect of blue light exposure in a xenograft animal model of UM.</p> <p>Methods</p> <p>Twenty New Zealand albino rabbits were injected with 1.0 × 10<sup>6 </sup>human UM cells (92.1) in the suprachoroidal space of the right eye. Animals were equally divided into two groups; the experimental group was exposed to blue light, while the control group was protected from blue light exposure. The eyes were enucleated after sacrifice and the proliferation rates of the re-cultured tumor cells were assessed using a Sulforhodamine-B assay. Cells were re-cultured for 1 passage only in order to maintain any in vivo cellular changes. Furthermore, Proliferating Cell Nuclear Antigen (PCNA) protein expression was used to ascertain differences in cellular proliferation between both groups in formalin-fixed, paraffin-embedded eyes (FFPE).</p> <p>Results</p> <p>Blue light exposure led to a statistically significant increase in proliferation for cell lines derived from intraocular tumors (p < 0.01). PCNA expression was significantly higher in the FFPE blue light treated group when compared to controls (p = 0.0096).</p> <p>Conclusion</p> <p>There is an increasing amount of data suggesting that blue light exposure may influence the progression of UM. Our results support this notion and warrant further studies to evaluate the ability of blue light filtering lenses to slow disease progression in UM patients.</p

    A Bioelectrochemical Approach to Characterize Extracellular Electron Transfer by Synechocystis sp. PCC6803

    Get PDF
    Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical device to measure the electrogenic output of a planktonically grown cyanobacterium, Synechocystis sp. PCC6803. Light dependent production of current is measured, and its magnitude is shown to scale with microbial cell concentration and light intensity. Bioelectrochemical characterization of a Synechocystis mutant lacking Photosystem II demonstrates conclusively that production of the majority of photocurrent requires a functional water splitting aparatus and electrons are likely ultimately derived from water. This shows the potential of the device to rapidly and quantitatively characterize photocurrent production by genetically modified strains, an approach that can be used in future studies to delineate the mechanisms of cyanobacterial extracellular electron transport

    Epigenetic change in e-cardherin and COX-2 to predict chronic periodontitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation of certain genes frequently occurs in neoplastic cells. Although the cause remains unknown, many genes have been identified with such atypical methylation in neoplastic cells. The hypermethylation of E-Cadherin and Cyclooxygenase 2 (COX-2) in chronic inflammation such as chronic periodontitis may demonstrate mild lesion/mutation epigenetic level. This study compares the hypermethylation status of E-Cadherin and COX-2 genes which are often found in breast cancer patients with that in chronic periodontitis.</p> <p>Methods</p> <p>Total DNA was extracted from the blood samples of 108 systemically healthy non-periodontitis subjects, and the gingival tissues and blood samples of 110 chronic periodontitis patient as well as neoplastic tissues of 106 breast cancer patients. Methylation-specific PCR for E-Cadherin and COX-2 was performed on these samples and the PCR products were analyzed on 2% agarose gel.</p> <p>Results</p> <p>Hypermethylation of E-Cadherin and COX-2 was observed in 38% and 35% of the breast cancer samples, respectively. In chronic periodontitis patients the detection rate was 25% and 19% respectively, and none was found in the systemically healthy non-periodontitis control subjects. The hypermethylation status was shown to be correlated among the three groups with statistical significance (p < 0.0001). The methylation of CpG islands in E-Cadherin and COX-2 genes in periodontitis patients occurs more frequently in periodontitis patients than in the control subjects, but occurs less frequently than in the breast cancer patients.</p> <p>Conclusions</p> <p>This set of data shows that the epigenetic change in E-Cadherin and Cyclooxygenase-2 is associated with chronic periodontitis. The epigenetic changes presented in chronic inflammation patients might demonstrate an irreversible destruction in the tissues or organs similar to the effects of cancer. Chronic periodontitis to some extent might be associated with DNA hypermethylation which is related to cancer risk factors.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore