1,462 research outputs found
Statistical Gaussian Model of Image Regions in Stochastic Watershed Segmentation
International audienceStochastic watershed is an image segmentation technique based on mathematical morphology which produces a probability density function of image contours. Estimated probabilities depend mainly on local distances between pixels. This paper introduces a variant of stochastic watershed where the probabilities of contours are computed from a Gaussian model of image regions. In this framework, the basic ingredient is the distance between pairs of regions, hence a distance between normal distributions. Hence several alternatives of statistical distances for normal distributions are compared, namely Bhattacharyya distance, Hellinger metric distance and Wasserstein metric distance
Electronic stress tensor analysis of hydrogenated palladium clusters
We study the chemical bonds of small palladium clusters Pd_n (n=2-9)
saturated by hydrogen atoms using electronic stress tensor. Our calculation
includes bond orders which are recently proposed based on the stress tensor. It
is shown that our bond orders can classify the different types of chemical
bonds in those clusters. In particular, we discuss Pd-H bonds associated with
the H atoms with high coordination numbers and the difference of H-H bonds in
the different Pd clusters from viewpoint of the electronic stress tensor. The
notion of "pseudo-spindle structure" is proposed as the region between two
atoms where the largest eigenvalue of the electronic stress tensor is negative
and corresponding eigenvectors forming a pattern which connects them.Comment: 22 pages, 13 figures, published online, Theoretical Chemistry
Account
High-throughput, quantitative analyses of genetic interactions in E. coli.
Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli
Recommended from our members
The influence of soil communities on the temperature sensitivity of soil respiration
Soil respiration represents a major carbon flux between terrestrial ecosystems and the atmosphere, and is expected to accelerate under climate warming. Despite its importance in climate change forecasts, however, our understanding of the effects of temperature on soil respiration (RS) is incomplete. Using a metabolic ecology approach we link soil biota metabolism, community composition and heterotrophic activity, to predict RS rates across five biomes. We find that accounting for the ecological mechanisms underpinning decomposition processes predicts climatological RS variations observed in an independent dataset (n = 312). The importance of community composition is evident because without it RS is substantially underestimated. With increasing temperature, we predict a latitudinal increase in RS temperature sensitivity, with Q10 values ranging between 2.33 ±0.01 in tropical forests to 2.72 ±0.03 in tundra. This global trend has been widely observed, but has not previously been linked to soil communities
Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases
Background: The secondary structure and complexity of mRNA influences its
accessibility to regulatory molecules (proteins, micro-RNAs), its stability and
its level of expression. The mobile elements of the RNA sequence, the wobble
bases, are expected to regulate the formation of structures encompassing coding
sequences.
Results: The sequence/folding energy (FE) relationship was studied by
statistical, bioinformatic methods in 90 CDS containing 26,370 codons. I found
that the FE (dG) associated with coding sequences is significant and negative
(407 kcal/1000 bases, mean +/- S.E.M.) indicating that these sequences are able
to form structures. However, the FE has only a small free component, less than
10% of the total. The contribution of the 1st and 3rd codon bases to the FE is
larger than the contribution of the 2nd (central) bases. It is possible to
achieve a ~ 4-fold change in FE by altering the wobble bases in synonymous
codons. The sequence/FE relationship can be described with a simple algorithm,
and the total FE can be predicted solely from the sequence composition of the
nucleic acid. The contributions of different synonymous codons to the FE are
additive and one codon cannot replace another. The accumulated contributions of
synonymous codons of an amino acid to the total folding energy of an mRNA is
strongly correlated to the relative amount of that amino acid in the translated
protein.
Conclusion: Synonymous codons are not interchangable with regard to their
role in determining the mRNA FE and the relative amounts of amino acids in the
translated protein, even if they are indistinguishable in respect of amino acid
coding.Comment: 14 pages including 6 figures and 1 tabl
Recommended from our members
The peculiar debris disk of HD 111520 as resolved by the Gemini Planet Imager
This is the author accepted manuscript. The final version is available from American Astronomical Society / IOP Publishing via the DOI in this record.Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ∼30-100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ∼40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0.″5 to 0.″8 from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.Z.H.D. and B.C.M. acknowledge a Discovery Grant and Accelerator Supplement from the Natural Science and Engineering Research Council of Canada. Supported by NSF grants AST-0909188, AST-1313718 (J.R.G., J.J.W., P.G.K.), AST-141378 (G.D., M.F.), and AST-1411868 (K.F., J.L.P., A.R., K.W.D.). Supported by NASA grants NNX15AD95G/NEXSS, NNX14AJ80G, and NNX11AD21G (J.R.G., J.J.W., P.G.K.)
Recommended from our members
The peculiar debris disk of HD 111520 as resolved by the Gemini Planet Imager
This is the author accepted manuscript. The final version is available from American Astronomical Society / IOP Publishing via the DOI in this record.Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ∼30-100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ∼40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0.″5 to 0.″8 from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.Z.H.D. and B.C.M. acknowledge a Discovery Grant and Accelerator Supplement from the Natural Science and Engineering Research Council of Canada. Supported by NSF grants AST-0909188, AST-1313718 (J.R.G., J.J.W., P.G.K.), AST-141378 (G.D., M.F.), and AST-1411868 (K.F., J.L.P., A.R., K.W.D.). Supported by NASA grants NNX15AD95G/NEXSS, NNX14AJ80G, and NNX11AD21G (J.R.G., J.J.W., P.G.K.)
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Saffold virus is able to productively infect primate and rodent cell lines and induces apoptosis in these cells
10.1038/emi.2014.15Emerging Microbes and Infections3
Land, Caste, and Class in rural West Bengal
By mapping the trajectories of changing dynamics in land relations in both colonial and postcolonial periods in rural West Bengal, this chapter tries to understand the way the land has been determining the issues of the rural economy in the rural hinterland. Based on field-survey data, this chapter argues, first, that the issues of land are shaped through a complex process of dynamic interaction between class, caste and capital. Second, the way the state and its policies do intervene in this complex process in order to shape the issues of land in rural areas has been complicating the matter further by way of privileging the capital and the landed class belonging to higher castes at the expense of the labouring class belonging to subordinate caste groups.Peer reviewe
- …
