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Abstract

We study the chemical bonds of small palladium clusters Pdn (n = 2–9) sat-
urated by hydrogen atoms using electronic stress tensor. Our calculation includes
bond orders which are recently proposed based on the stress tensor. It is shown that
our bond orders can classify the different types of chemical bonds in those clusters.
In particular, we discuss Pd–H bonds associated with the H atoms with high coor-
dination numbers and the difference of H–H bonds in the different Pd clusters from
viewpoint of the electronic stress tensor. The notion of “pseudo-spindle structure”
is proposed as the region between two atoms where the largest eigenvalue of the
electronic stress tensor is negative and corresponding eigenvectors forming a pattern
which connects them.

Wave function analysis; Theory of chemical bond; Stress tensor; hydrogenated Pd
clusters



1 Introduction

Studying structures and energetics of small palladium clusters is of great importance as
the first step toward understanding their catalytic properties. In Ref. [1], the structures
and physical properties of small palladium clusters Pdn (n = 2–15) and several larger
clusters have been studied using density functional theory (DFT) calculation. They have
investigated their isomeric structures extensively and found many energetically nearly de-
generate isomers. In Ref. [2], based on the lowest energy structures of Pdn (n = 2–9)
found in Ref. [1], the role of small palladium clusters in catalyzing dissociative chemisorp-
tion of molecular hydrogen has been studied by DFT calculation. The results include the
structures of the Pd clusters under full hydrogen saturation. As for Pd6 cluster, they have
reported detailed analysis of sequential H2 dissociative chemisorption starting from bare
Pd6 cluster to Pd6H14 cluster. Their conclusion of this work is that the capacity of small
Pd clusters to adsorb H atoms is substantially smaller on average than that of Pt clus-
ters, indicating that Pd nanoparticles are less efficient than Pt nanoparticles in catalyzing
dissociative chemisorption of H2 molecules. Although this may be not so industrially en-
couraging result for the Pd clusters, the obtained structures have interesting features from
the viewpoint of chemical bonds. Our paper is a follow-up study of these papers to learn
more about nature of chemical bonds in Pdn (n = 2–9) and their hydrogen-saturated
versions using the electronic structures obtained by quantum chemical calculation.

In our analysis of chemical bonds, we use the electronic stress tensor. This method is
based on the Regional Density Functional Theory (RDFT) and Rigged Quantum Electro-
dynamics (RQED) [3–10] and has been applied to several molecular systems [11–17]. Our
method includes recently proposed bond orders [11] which are defined using the electronic
stress tensor. One of our purposes is to show their usefulness in the Pd clusters. As far as
metallic clusters are concerned, our analysis had been only applied to Pt clusters [13] and
Al4 cluster [17] so the present analysis can be useful basis for further research using our
stress tensor based analysis. Special interest in these Pd clusters is that there seems to be
H-H bonds within the clusters. Some of these H-H bonds are considered to form after hy-
drogen molecules are dissociatively adsorbed to the Pd clusters [2]. It would be intriguing
to investigate whether these H atoms are bonded from the viewpoint of electronic stress
tensor and, if bonded, how the bonding nature differs from that of the free H2 molecule.

This paper is organized as follows. In the next section, we briefly explain our quantum
chemical computation method. We also describe our analysis method based on the RDFT
and the RQED, including the definition of our bond orders. In Sec. 3, we discuss our
results. In Sec. 3.1, we analyze the chemical bonds of the hydrogenated Pd clusters using
our bond orders. In Sec. 3.2, we discuss the chemical bond using the stress tensor with
special emphasis on the Pd–H bonds associated with H atom with high coordination
number and the bonds between H atoms. In Sec. 3.3 we discuss a way to improve our
bond order definition by integrating energy density over some area. We summarize our
paper in Sec. 4.
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2 Theory and calculation methods

2.1 Ab initio electronic structure calculation

We perform ab initio quantum chemical calculation for Pd clusters and their hydrides. In
this work, calculations are performed by Gaussian03 program package [18] using density
functional theory (DFT) with Perdew-Wang 1991 exchange and correlation functional
(PW91) [19]. The 6-31G** basis set with polarization functions [20–22] has been used for
hydrogen atoms and LanL2DZ effective core potential [23] for Pd atoms. Optimization
was performed without imposing symmetry.

2.2 RDFT analysis

In the following section, we use quantities derived from the electronic stress tensor to
analyze chemical bonds of bare and hydrogenated Pd clusters. This method based on
RDFT and RQED [3–10] provides useful quantities to investigate chemical bonding such
as new definition of bond order [11–13]. We briefly describe them below. (For other studies
of quantum systems with the stress tensor in a slightly different context, see Refs. [25–36].
See also Refs. [37,38] for related discussion on energy density.)

The basic quantity in this analysis is the electronic stress tensor density ←→τ S(~r) whose
components are given by

τSkl(~r) =
~2

4m

∑
i

νi

[
ψ∗i (~r)

∂2ψi(~r)

∂xk∂xl
− ∂ψ∗i (~r)

∂xk

∂ψi(~r)

∂xl

+
∂2ψ∗i (~r)

∂xk∂xl
ψi(~r)−

∂ψ∗i (~r)

∂xl

∂ψi(~r)

∂xk

]
, (1)

where {k, l} = {1, 2, 3}, m is the electron mass, ψi(~r) is the ith natural orbital and νi is
its occupation number.

By taking a trace of ←→τ S(~r), we can define energy density of the quantum system at
each point in space. The energy density εS

τ (~r) is given by

εS
τ (~r) =

1

2

3∑
k=1

τSkk(~r). (2)

We note that, by using the virial theorem, integration of εS
τ (~r) over whole space gives usual

total energy E of the system:
∫
εS

τ (~r)d~r = E.
Regional chemical potential µR [3] is calculated approximately using εS

τ (~r) [11].

µR =
∂ER

∂NR

≈ εS
τ (~r)

n(~r)
, (3)
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where n(~r) is the ordinary electron density at ~r. Since electrons tend to move from high
µR region to low µR region, the distribution of µR maps the chemical reactivity.

Now, we define bond orders as εS
τ (~r) or µR at “Lagrange point” [11]. The Lagrange

point ~rL is the point where the tension density ~τS(~r) given by the divergence of the stress
tensor

τSk(~r) =
∑

l

∂lτ
Skl(~r)

=
~2

4m

∑
i

νi

[
ψ∗i (~r)

∂∆ψi(~r)

∂xk
− ∂ψ∗i (~r)

∂xk
∆ψi(~r)

+
∂∆ψ∗i (~r)

∂xk
ψi(~r)−∆ψ∗i (~r)

∂ψi(~r)

∂xk

]
, (4)

vanishes. Namely, τSk(~rL) = 0. ~τS(~r) is the expectation value of the tension density

operator ~̂τS(~r), which cancels the Lorentz force density operator ~̂L(~r) in the equation of
motion for stationary state [7]. Therefore, we see that ~τS(~r) expresses purely quantum
mechanical effect and it has been proposed that this stationary point characterizes chemical
bonding [11]. Then, our definitions of bond order are

bε =
εS

τAB(~rL)

εS
τHH(~rL)

, (5)

and

bµ =
εS

τAB(~rL)/nAB(~rL)

εS
τHH(~rL)/nHH(~rL)

. (6)

One should note normalization by the respective values of a H2 molecule calculated at the
same level of theory (including method and basis set).

We use Molecular Regional DFT (MRDFT) package [39] to compute these quantities
introduced in this section. Some part of the visualization is done using PyMOL Molecular
Viewer program [24].

3 Results and discussion

3.1 Bond order analysis

The optimized structures for hydrogenated Pd clusters Pd2H2, Pd3H2, Pd4H8, Pd5H10,
Pd6H14, Pd7H16, Pd8H16 and Pd9H22 are shown in Fig. 1. In the figure, atoms are con-
nected when the Lagrange point (Sec. 2.2) is found between them and the bond is colored
to show the magnitude of the bond order bε (eq. (5)). Fig. 2 shows the exactly the same
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structures with the different bond order bµ (eq. (6)). 1 These structures are obtained by
re-optimizing the structures reported in Ref. [2]. We performed optimization with multi-
plicity of 1, 3 and 5 for each cluster and adopted the one with the lowest energy, which
turned out to be singlet for all the clusters. We did not find much difference between the
structures in Ref. [2] and our re-optimized ones. For later use, we report that we performed
similar procedure for bare Pd clusters Pdn (n = 2–9) starting with the structures obtained
in Ref. [1]. In this case triplets have the lowest energy for all the clusters.

To show features of the chemical bonds in those clusters collectively and to exhibit
usefulness of our bond order definitions, we plot bond orders against the bond length for
all the bonds in the bare and hydrogenated Pd clusters in Fig. 3. In addition to our bond
orders bε and bµ, we plot using conventional bond orders: the Wiberg bond index [40],
atom-atom overlap-weighted natural atomic orbital (NAO) bond order [41, 42] and the
Mayer’s bond order [43]. It is apparent that our bond orders have better correlation than
the other conventional bond orders. Therefore, we only show our bond orders for the
following analysis.

In Figs. 4 and 5, we re-plot the bond order v.s. bond length for bε and bµ respectively,
this time distinguishing between different types of bonding. The types we consider are
Pd–Pd, terminal Pd–H, two-fold Pd-H, three-fold Pd–H, four-fold Pd–H and H–H. Here,
two-fold Pd-H bond is associated with the H atom bridging two Pd atoms like Pd–H–Pd
and, similarly, three-(four-)fold Pd-H bond with the H atom bonded to three (four) Pd
atoms. Each type of bonding is plotted by different marks in Figs. 4 and 5 and number of
each type for each cluster is shown in Table 1. We note that some of the H atoms which
we classified as having two-fold and three-fold Pd–H bonds have a bond with H atom
in addition. In detail, H(12) and H(13) in Pd5H10 and H(10) and H(21) in Pd7H16 are
bonded to each other in addition to two Pd atoms, which results in having three bonds
from each H. Similarly, H(10) and H(11) in Pd6H14 are bonded to each other in addition
to three Pd atoms, making four bonds from each H.

From Figs. 4 and 5, we see that bonds in the Pd clusters can be classified by the different
slopes on the bond order v.s. bond length plane. There are a slope that corresponds to the
Pd–Pd bonds and two slopes for Pd–H bonds. There are three outliers that correspond
to H–H bonds. The fact that Pd–Pd bonds, whether they are in hydrogenated clusters or
in bare clusters, are on a single slope indicates that the character of the bonding is not
affected much by the hydrogenation. They on average become longer and weaker upon
hydrogenation but the relation between the bond order and bond length is unchanged.

Pd–H bonds may be classified in two groups. One has shorter bond length (. 1.9 Å)
and higher inclination to which terminal Pd–H bond and two-fold Pd–H belong. Some
bonds in three-fold and four-fold Pd–H also belong to this group. Another group has
longer bond length (& 1.9 Å) and lower inclination and consists only of three-fold and
four-fold Pd–H. For convenience, we call the former group “A” and the latter “B”. Closer
inspection of these H atoms with high-coordination numbers tells that there is no H atom

1We list all bond orders and enlarged structures with atom numbering in the supplementary materials
(Fig. S1 and Table S1).
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which has only group B bonds. The bonds stem from H atoms consist of those of group
A or mixture of A and B. See Table 2 for the detail. It is interesting that there are Pd–H
bonds which are longer than some of the Pd–Pd bonds. Such long bonds are found in
four-fold Pd–H bonds, which will be investigated more in Sec. 3.2. We also discuss in
Sec. 3.2 that group A is characterized by a “spindle structure” and the group B by a
“pseudo-spindle structure”.

We now would like to give somewhat more quantitative analysis of these slopes in the
bond order v.s. bond length relation by fitting the data points to linear and exponential
curves. We fit data points which belong to the shorter Pd–H bonds (group A), the longer
Pd–H bonds (group B) and the Pd–Pd bonds to functions in the forms y = ax + b and
y = c exp(−dx). Here, each group has 169, 13 and 134 data points, and in the fitting
functions, y stands for bε or bµ and x stands for the bond length. We summarize the results
in Table 3. Roughly speaking, both functional forms give good fits, and the differences in
the fitting parameters confirm the existence of two slopes for the Pd–H bonds (e.g. the
inclination of the linear fits, the parameter a, is about 8 times larger for the group A
than the group B). On closer look, the fits to bε are better performed by the exponential
function especially for Pd–H bonds. In contrast, the use of exponential form does not
improve the fits to bµ much, and in fact, the linear fits are slightly better for the Pd–H
bond group A and the Pd–Pd bond group.

As mentioned above, H–H bonds are shown in Figs. 4 and 5 as isolated points from the
slopes of Pd–Pd and Pd–H. They cannot be put on a single slope and appear somewhat
irregular. Since the hydrogenated Pd clusters here are formed by dissociative chemisorp-
tion of H2 [2], these H–H are considered to be not trivial bonding of the H2 molecule.
Namely, they are formed on or within the clusters and characteristic to the Pd clusters.
They all have much longer and weaker bonds than the H–H bond in the H2 molecule.
(Note that bε and bµ are unity for the H2 molecule by definition. The bond length of
H2 in our computational method is 0.748252 Å.) We will investigate these H–H bonds in
more detail in Sec. 3.2. The existence of such H–H bonds are most notable difference from
hydrogenated small Pt clusters which have been investigated in Refs. [13,44]

3.2 Stress tensor analysis of chemical bond

In the previous section, we have seen that there are several interesting bonding patterns
found in the hydrogenated Pd clusters. We investigate these bonds in detail via the
electronic stress tensor analysis.

Before we discuss the Pd clusters, we show how the chemical bond of the hydrogen
molecule is expressed by the electronic stress tensor (Eq. (1)). In Fig. 6, on the left
panel, we plot the largest eigenvalue of the stress tensor and corresponding eigenvector on
the plane including the internuclear axis. On the right panel, we plot the tension vector
(Eq. (4)), which is normalized and whose norm is expressed by the color of the arrows. The
sign of the largest eigenvalue tells whether electrons at a certain point in space feel tensile
force (positive eigenvalue) or compressive force (negative eigenvalue) and the eigenvector
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tells the direction of the force. We can see that the region with positive eigenvalue spreads
between the H atoms, which corresponds to the formation of a covalent bond. In that
region, the eigenvectors form a bundle of flow lines that connects the H nuclei. Such a
region, called “spindle structure” [8], is clearly seen in the panel. On the right panel, the
vanishing point of tension vector “Lagrange point” (Sec. 2.2) is found at the midpoint of
the internuclear axis, which is quite reasonable.

We will now turn to the hydrogenated Pd clusters. We first look at the Pd–H–Pd
bridging bond in Pd6H14 as shown in Fig. 7. We see the spindle structure between Pd
and H just like the H2 molecule mentioned above, indicating the covalency of the Pd–H
bond here. As for the Pd–Pd bond, although we found a Lagrange point and flow of the
eigenvectors connecting Pd atoms, the eigenvalue in the region between Pd atoms has
negative value. This indicates that the interaction between these two Pd atoms is weak
and the bond between them is different from a covalent bond characterized by a spindle
structure. We shall call this pattern a “pseudo-spindle structure”. Namely, the pseudo-
spindle structure has similar eigenvector flow to that of the spindle structure between two
atoms but with negative eigenvalue region between them.

We next examine the very weak Pd–H bond which is found in the four-fold bond in
Pd9H22. There are two H atoms which have bonds between four Pd atoms and two of
them are very weak (see Tables 1 and 2). Fig. 8 focuses on one of such H atom (H(17))
and shows one weaker Pd–H bond (Pd(3)–H(17)) and one stronger bond (Pd(4)–H(17))
(other two bonds, Pd(1)–H(17) and Pd(7)–H(17), are off this plane). The stronger one has
the spindle structure and is similar to the one in the Pd–H–Pd bridging bond. Although
the weaker one has a long bond distance (2.59 Å) and negative eigenvalue region around
the Lagrange point, there is a flow which connects Pd(3) and H(17) so we regard this as
a bond. In other words, this bond is characterized by the pseudo-spindle structure. This
classification that shorter bonds are characterized by spindle structures and longer ones
are by pseudo-spindle structures seems to hold rather in general for the hydrogenated Pd
clusters we have investigated. In Sec. 3.1, we have defined two groups “A” and “B” for the
Pd–H bonds where the former (the latter) has bond length shorter (longer) than about
1.9 Å. In Sec. 3.1, we have pointed out that they are on slopes with different inclination in
the bond order v.s. bond length plot. From the viewpoint of the electronic stress tensor,
group A is characterized by a spindle structure and the group B by a pseudo-spindle
structure.

Finally, we discuss the H–H bonds in Pd5H10, Pd6H14 and Pd7H16. Their bond lengths
are respectively 1.56 Å, 1.63 Å and 2.03 Å, which are longer than that of the H2 molecule.
From the structural point of view, the H–H in Pd5H10 is located outside the Pd cage. The
H–H in Pd6H14 is completely contained in the Pd cage and the one in Pd7H16 is marginally
within the Pd cage. As before, we show the electronic stress tensor and tension for these
bonds in Figs. 9, 10 and 11. In these figures, there are more than three labelled atoms but
they are all on the same plane (the distance between the plane and the labelled atoms are
less than 0.01 Å). In Fig. 11, left panel, there is a region with negative eigenvalue (shown
by a blue circular region) at the lower-center part of the panel. This is caused by the
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existence of Pd(6) but, since it locates slightly above this plane (about 0.4 Å), it is not
labelled.

In these figures, we see that all the regions between Pd and H have a spindle structures,
suggesting covalency of the Pd–H bonds. As for the H–H bonds, there is a spindle structure
for the one in Pd5H10 (Fig. 9). The H–H bonds in Pd6H14 and Pd7H16 (Figs. 10 and 11)
are characterized by the negative eigenvalue region and eigenvectors connecting H atoms,
namely a pseudo-spindle structure.

3.3 Improving bond order definition by surface integral

In this section, we propose a way to improve our definition of bond order and apply it to
the hydrogenated Pd clusters. As is described in Sec. 2.2, our bond order bε is defined
from the energy density evaluated at the Lagrange point. In the previous paper [12], using
many kinds of hydrocarbon molecules, it has been shown that this definition manifests a
nice feature as a bond order.

However, it is not difficult to imagine a type of chemical bond which cannot be well
characterized by a single point between two atoms. This would be true for chemical bonds
where spatially extended d-orbitals are involved. Then, we consider it is worthwhile to
investigate this issue by expanding our bond order definition by taking the surface integral
of energy density instead of the energy density at the Lagrange point.

Then, we need to determine the surface over which we integrate the energy density.
The most natural choice would be a “Lagrange surface” [10] which is constructed from a
family of lines which going out from a Lagrange point (if a Lagrange surface includes a
Lagrange point). Namely, we define bond order of the bond between atoms A and B as

bε(S) =

∫
SAB

d2σεS
τ (~σ)∫

SHH
d2σεS

τ (~σ)
, (7)

where SAB denotes the Lagrange surface between atoms A and B. As is the cases of bε
(Eq. (5)) and bµ (Eq. (6)), we normalize by the value of hydrogen molecule.

Unfortunately, however, this Lagrange surface is not so easy to define numerically.
Hence we instead take the surface integral over the plane which includes a Lagrange point
and is perpendicular to the axis connecting two atoms. Note that such a plane coincides
with a Lagrange surface in the case of homonuclear diatomic molecules.

The results of the bε(S) calculation are shown in Figs. 12 and 13. We see that bε(S)

is calculated to be larger than bε for most of the bonds in the hydrogenated Pd clusters.
This comes from the fact that the energy density distribution in those clusters is spatially
extended relative to that of the hydrogen molecule. The ratio of bε(S) to bε is especially
large for Pd–Pd bonds as shown in Fig. 13. This in turn is considered to be due to the
d-orbitals of Pd atoms participating in the bonds.
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4 Summary

In this paper, we have applied recently developed method to analyze electronic structure
via electronic stress tensor to the small hydrogenated Pd clusters whose structures have
been known [1, 2]. From the results of ab initio electronic structure calculation of these
clusters, we calculated quantities which are defined at each point in space: stress tensor,
tension, energy density and regional chemical potential. The chemical bond is character-
ized by the Lagrange point, where the tension vanishes and bond orders are defined by the
energy density or chemical potential at that point. We have confirmed that thus defined
bond orders are useful to classify the chemical bonds in Pd clusters as had been done for
Pt clusters [13] and Al4 clusters [17].

For some of the bonds, we have done more detailed analysis by drawing the eigenvalue
of stress tensor, corresponding eigenvectors and tension vectors. In particular, the weak
bonds with long bond distances suggested by the Lagrange point search in our bond order
analysis are confirmed to have a flow of eigenvectors connecting bonded atoms. They
include four-fold Pd–H bonds and non-trivial H–H bonds. As for the H–H bond, we found
that the one in Pd5H10 has a positive eigenvalue region, “spindle structure”, showing
covalency like that of the H2 molecule whereas those in Pd6H14 and Pd7H16 have negative
eigenvalue regions, “pseudo-spindle structure”. As for the Pd–H bond, it has been shown
to be classified into two groups. One with shorter bond lengths which is characterized by a
spindle structure and another with longer bond lengths characterized by a pseudo-spindle
structure.

We proposed a terminology “pseudo-spindle structure” in this paper but actually, there
already has been such a structure found in our previous study for C2H2 [9]. The negative
eigenvalue of C2H2 is caused by the compressive stress nearby the C nuclei. In general,
the stress tensor has a large negative eigenvalue in radial direction in neighborhood of a
nucleus due the dominance of the attractive Coulomb force. In the case of C2H2, the bond
length is too short that the internuclear region is immersed under the atomic compressive
stress [9]. This is a pseudo-spindle structure in a strong bond. We can say that we have
found in this paper two more types of pseudo spindle structure. One is the pseudo-spindle
structure associated with very long and weak H–H bond and Pd–H bond. Another is the
pseudo-spindle structure associated with a bond between metallic atoms, Pd–Pd bond.

We also have introduced an extension to our bond order. The modified definition uses
the integration of the energy density over the “Lagrange surface” instead of the energy
density at the Lagrange point. This modification makes the bond order greater, which
reflects the contribution of spatially extended d-orbitals to the bonds in the clusters.

We believe that this study has provided another useful example of our stress tensor
approach to chemical bonds. Further applications to other compounds, especially to those
including transition metals, will solidify the basis of the stress tensor analysis and will
deepen our understanding of chemical bonds.
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Table 1: Number of bonding type in the hydrogenated Pd clusters. Pd–H (terminal), two-
fold Pd–H (bridging), three-fold Pd–H and four-fold Pd–H respectively count the number
of H atoms who have one, two, three and four bonds between Pd atom.

Cluster Pd–Pd Pd–H Two-fold Three-fold Four-fold H–H
(terminal) Pd–H Pd–H Pd–H

Pd2H2 1 0 2 0 0 0
Pd3H2 3 0 1 1 0 0
Pd4H8 3 2 6 0 0 0
Pd5H10 4 0 10 0 0 1
Pd6H14 6 0 12 2 0 1
Pd7H16 12 2 13 1 0 1
Pd8H16 8 0 16 0 0 0
Pd9H22 13 6 10 4 2 0

Table 2: The bond length of the Pd–H bonds participating in three-fold and four-fold
Pd–H. See Fig. 1 for the label of H atom.

Cluster Bond center Bond lengths [Å]

Pd3H2 H(4) 1.69, 1.87, 1.87
Pd6H14 H(10) 1.69, 1.69, 1.69

H(11) 1.69, 1.69, 1.69
Pd7H16 H(19) 1.75, 2.06, 2.06
Pd9H22 H(13) 1.69, 1.76, 2.17

H(14) 1.72, 1.97, 2.03
H(17) 1.68, 1.71, 2.39, 2.59
H(18) 1.73, 1.97, 2.03
H(20) 1.68, 1.72, 2.37, 2.57
H(21) 1.70, 1.78, 2.11
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Table 3: Linear and exponential fits to the bond order v.s. bond length data. We compute
fits to three groups of data points separately: shorter Pd–H bonds (group A), longer Pd–H
bonds (group B) and Pd–Pd bonds. In the fitting functions, x stands for the bond length.
χ2

red stands for the reduced χ2 of the fit.

Bond Types bε = ax+ b bε = c exp(−dx) bµ = ax+ b bµ = c exp(−dx)

Pd–H (A) a = −1.43 c = 2.42× 102 a = −1.40 c = 11.5
b = 2.81 d = 3.82 b = 3.33 d = 1.47

χ2
red = 5.9× 10−4 χ2

red = 1.3× 10−4 χ2
red = 7.3× 10−4 χ2

red = 8.3× 10−4

Pd–H (B) a = −0.173 c = 8.53 a = −0.270 c = 1.66
b = 0.487 d = 2.04 b = 1.22 d = 0.448

χ2
red = 1.3× 10−4 χ2

red = 3.6× 10−5 χ2
red = 2.4× 10−4 χ2

red = 2.3× 10−4

Pd–Pd a = −0.346 c = 1.40× 102 a = −0.931 c = 17.9
b = 1.08 d = 2.54 b = 3.36 d = 1.13

χ2
red = 3.7× 10−5 χ2

red = 2.6× 10−5 χ2
red = 4.8× 10−4 χ2

red = 6.0× 10−4
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: Optimized structures and bond order for hydrogenated Pd clusters: (a) Pd2H2,
(b) Pd3H2, (c) Pd4H8, (d) Pd5H10, (e) Pd6H14, (f) Pd7H16, (g) Pd8H16 and (h) Pd9H22.
The bonds are drawn at which Lagrange points are found and our energy density based
bond order bε (eq. (5)) is shown by color.
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(a) (b)

(e) (f)

(g) (h)

(d)(c)

Figure 2: Same as Fig. 1 but with our chemical potential based bond order bµ (eq. (6)) is
shown by color.
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Figure 3: Comparison of the relation between bond length and various bond orders: the
Wiberg bond index (blue square), atom-atom overlap-weighted NAO bond order (magenta
circle), the Mayer’s bond order (light-blue triangle) and our bond orders bε (red down-
triangle) and bµ (green diamond).
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Figure 4: The relation between bond length and energy density bond order bε in the bare
Pd clusters and hydrogenated Pd clusters. We classify bonding types as terminal Pd–H
(light-blue cross), two-fold Pd-H (green asterisk), three-fold Pd–H (blue square), four-fold
Pd–H (black triangle), Pd–Pd in hydrogenated Pd clusters (magenta circle), Pd–Pd in
bare Pd clusters (red diamond), and H–H (red filled-triangle). Note that the H2 molecule
would locate at (0.748, 1.000).
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Figure 5: Same as Fig. 4 but with chemical potential bond order bµ.
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Figure 6: The H–H bond in H2. The largest eigenvalue of the stress tensor and correspond-
ing eigenvector (left panel) and tension (right panel) are plotted on the plane including
the bond axis. On the left panel, contours of 0.1 and −0.1 are shown by white dotted
lines. On the right panel, the normalized tension vectors whose norm is expressed by the
color of the arrows are shown and the Lagrange point is marked by a black diamond.

0.00

0.05

0.10

Figure 7: The Pd–H–Pd bridging bond in Pd6H14 is shown as the largest eigenvalue of the
stress tensor and corresponding eigenvector (left panel) and tension (right panel) on the
plane including the labelled atoms. See Figs. 1 or 2 for the number in the label. On the
right panel, the Lagrange point is marked by a black diamond.
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Figure 8: The four-fold Pd–H bond in Pd9H22 is shown in the similar manner as Fig. 7.
Two of four Pd–H bonds from H(17) are shown on this plane.
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Figure 9: The H–H bond in Pd5H10 is shown in the similar manner as Fig. 7.
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Figure 10: The H–H bond in Pd6H14 is shown in the similar manner as Fig. 7.
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Figure 11: The H–H bond in Pd7H16 is shown in the similar manner as Fig. 7.
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Figure 12: Comparison of the relation between bond length and bond orders. Bond order
defined from the energy density at the Lagrange points (bε) and one defined from surface
integral of the energy density (bε(S)).
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Figure 13: The ratio of bε(S) to bε.
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Fig. S1 Structures, atom numbering and bonding patters in hydrogenated Pd-clusters.

Table S1 Lagrange point data.



(a) Pd2H2

(b) Pd3H2

Fig. S1: Structures, atom numbering and bonding patters in (a) Pd2H2, (b) Pd3H2, 
(c) Pd4H8, (d) Pd5H10, (e) Pd6H14, (f) Pd7H16, (g) Pd8H16, (h) Pd9H22 .



(c) Pd4H8

(d) Pd5H10

Fig. S1: (continued)



(e) Pd6H14

(f) Pd7H16

Fig. S1: (continued)



(g) Pd8H16

(h) Pd9H22
Fig. S1: (continued)



Table S1 Lagrange point data (a)Pd2H2

Bonding
Atoms Pair R[Å] bε bµ

Wiberg
index

NAO bond
order

Mayer
bond orders

1 2 2.69 0.180 0.913 0.367 0.167 0.656
1 3 1.68 0.417 1.031 0.435 0.350 0.501
1 4 1.68 0.417 1.031 0.346 0.350 0.501
2 3 1.68 0.417 1.031 0.435 0.350 0.501
2 4 1.68 0.417 1.031 0.435 0.350 0.501

Table S1 Lagrange point data (b)Pd3H2

Bonding
Atoms Pair R[Å] bε bµ

Wiberg
index

NAO bond
order

Mayer
bond orders

1 2 2.70 0.151 0.864 0.381 0.189 0.667
1 3 2.76 0.125 0.764 0.271 0.134 0.502
1 4 1.87 0.219 0.789 0.288 0.274 0.296
1 5 1.67 0.433 1.042 0.421 0.339 0.496
2 3 2.70 0.151 0.865 0.381 0.189 0.667
2 4 1.69 0.412 1.040 0.359 0.331 0.432
3 4 1.87 0.216 0.785 0.287 0.272 0.239
3 5 1.67 0.434 1.043 0.421 0.339 0.497

Table S1 Lagrange point data (c)Pd4H8

Bonding
Atoms Pair R[Å] bε bµ

Wiberg
index

NAO bond
order

Mayer
bond orders

1 12 1.69 0.394 0.969 0.457 0.382 0.572
1 3 2.79 0.126 0.784 0.104 0.046 0.371
1 5 1.74 0.305 0.876 0.333 0.311 0.399
1 8 1.69 0.374 0.954 0.392 0.334 0.470
2 3 2.75 0.120 0.760 0.101 0.091 0.375
2 6 1.72 0.333 0.912 0.341 0.310 0.415
2 8 1.72 0.329 0.907 0.336 0.309 0.410
2 9 1.69 0.396 0.979 0.445 0.389 0.559
3 10 1.58 0.599 1.125 0.512 0.418 0.744
3 11 1.57 0.605 1.116 0.495 0.412 0.733
3 12 1.84 0.226 0.788 0.229 0.250 0.319
3 4 2.75 0.120 0.760 0.101 0.091 0.375
3 7 1.84 0.226 0.788 0.229 0.250 0.319
3 9 1.86 0.211 0.773 0.184 0.234 0.316
4 5 1.75 0.300 0.871 0.323 0.307 0.392
4 6 1.69 0.371 0.952 0.385 0.330 0.465
4 7 1.69 0.393 0.968 0.456 0.384 0.571



Table S1 Lagrange point data (d)Pd5H10

Bonding
Atoms Pair R[Å] bε bµ

Wiberg
index

NAO bond
order

Mayer
bond orders

1 11 1.66 0.421 1.005 0.378 0.318 0.464
1 13 1.71 0.373 0.972 0.322 0.314 0.415
1 2 2.80 0.114 0.763 0.076 0.110 0.340
1 3 2.76 0.133 0.759 0.110 0.059 0.361
12 13 1.56 0.073 0.512 0.117 0.160 0.061
1 6 1.82 0.240 0.781 0.262 0.274 0.426
1 8 1.79 0.261 0.818 0.281 0.303 0.431
2 12 1.71 0.376 0.975 0.323 0.315 0.418
2 15 1.66 0.420 1.003 0.377 0.317 0.463
2 5 2.76 0.133 0.759 0.110 0.059 0.361
2 7 1.81 0.243 0.785 0.264 0.275 0.430
2 8 1.80 0.258 0.815 0.278 0.301 0.427
3 10 1.80 0.258 0.816 0.279 0.301 0.428
3 13 1.71 0.376 0.977 0.322 0.315 0.417
3 5 2.80 0.114 0.762 0.076 0.110 0.340
3 6 1.81 0.243 0.785 0.264 0.275 0.430
3 9 1.66 0.420 1.004 0.375 0.316 0.462
4 11 1.72 0.322 0.893 0.340 0.304 0.426
4 14 1.72 0.324 0.896 0.342 0.305 0.429
4 15 1.72 0.325 0.897 0.342 0.305 0.428
4 9 1.72 0.326 0.897 0.344 0.305 0.429
5 10 1.79 0.261 0.818 0.281 0.302 0.430
5 12 1.71 0.372 0.972 0.321 0.314 0.414
5 14 1.66 0.417 1.001 0.377 0.317 0.463
5 7 1.82 0.240 0.781 0.263 0.274 0.426



Table S1 Lagrange point data (e)Pd6H14

Bonding
Atoms Pair R[Å] bε bµ

Wiberg
index

NAO bond
order

Mayer
bond orders

10 11 1.63 0.093 0.664 0.031 0.081 0.012
1 11 1.69 0.411 1.033 0.246 0.257 0.294
1 17 1.82 0.229 0.757 0.266 0.265 0.418
1 19 1.82 0.226 0.753 0.264 0.264 0.415
1 2 2.84 0.109 0.704 0.056 0.096 0.279
1 4 2.84 0.109 0.704 0.056 0.096 0.278
1 8 1.78 0.260 0.811 0.280 0.286 0.423
1 9 1.79 0.258 0.808 0.278 0.285 0.421
2 10 1.69 0.410 1.032 0.246 0.257 0.294
2 15 1.82 0.228 0.756 0.266 0.265 0.417
2 16 1.79 0.259 0.808 0.279 0.286 0.422
2 5 2.84 0.109 0.704 0.056 0.096 0.279
2 7 1.83 0.225 0.751 0.263 0.263 0.414
2 9 1.78 0.261 0.812 0.281 0.287 0.424
3 10 1.69 0.411 1.033 0.246 0.257 0.294
3 12 1.78 0.260 0.811 0.280 0.286 0.423
3 18 1.79 0.258 0.808 0.278 0.285 0.421
3 20 1.83 0.225 0.752 0.264 0.263 0.414
3 5 2.84 0.109 0.703 0.056 0.096 0.278
3 6 2.84 0.109 0.704 0.056 0.096 0.279
3 7 1.82 0.229 0.757 0.266 0.265 0.418
4 10 1.69 0.410 1.032 0.246 0.257 0.294
4 14 1.78 0.261 0.812 0.280 0.287 0.424
4 15 1.83 0.225 0.751 0.263 0.263 0.414
4 20 1.82 0.228 0.755 0.266 0.265 0.417
4 6 2.84 0.109 0.704 0.056 0.096 0.278
4 8 1.79 0.259 0.809 0.279 0.286 0.422
5 11 1.69 0.410 1.032 0.246 0.257 0.294
5 12 1.78 0.259 0.809 0.279 0.286 0.422
5 13 1.83 0.225 0.751 0.264 0.263 0.414
5 16 1.78 0.261 0.811 0.281 0.287 0.423
5 19 1.82 0.227 0.754 0.265 0.265 0.416
6 11 1.69 0.410 1.032 0.246 0.257 0.294
6 13 1.82 0.229 0.756 0.266 0.265 0.418
6 14 1.79 0.258 0.808 0.278 0.285 0.421
6 17 1.83 0.225 0.751 0.263 0.263 0.413
6 18 1.78 0.261 0.812 0.281 0.287 0.424



Table S1 Lagrange point data (f)Pd7H16

Bonding
Atoms Pair R[Å] bε bµ

Wiberg
index

NAO bond
order

Mayer
bond orders

10 21 2.03 0.033 0.461 0.013 0.033 0.005
1 2 2.71 0.145 0.777 0.105 0.058 0.336
1 10 1.74 0.333 0.921 0.287 0.282 0.378
1 13 1.81 0.246 0.788 0.269 0.264 0.437
1 14 1.75 0.297 0.847 0.322 0.300 0.430
1 17 1.86 0.216 0.756 0.206 0.232 0.339
1 18 1.81 0.242 0.782 0.260 0.275 0.433
1 5 2.75 0.130 0.793 0.092 0.121 0.335
1 6 2.86 0.101 0.725 0.080 0.076 0.316
1 7 2.84 0.110 0.718 0.054 0.121 0.298
2 10 1.72 0.341 0.919 0.332 0.293 0.376
2 16 1.79 0.269 0.825 0.262 0.300 0.418
2 17 1.71 0.347 0.910 0.314 0.313 0.482
2 19 2.06 0.124 0.646 0.105 0.168 0.230
2 23 1.54 0.674 1.145 0.569 0.413 0.774
2 3 2.69 0.155 0.878 0.064 0.119 0.383
2 7 3.00 0.062 0.582 0.043 0.066 0.202
3 11 1.71 0.346 0.909 0.313 0.313 0.479
3 16 1.78 0.270 0.827 0.264 0.300 0.419
3 19 2.07 0.123 0.646 0.105 0.168 0.229
3 21 1.73 0.330 0.907 0.327 0.289 0.367
3 22 1.54 0.674 1.145 0.570 0.414 0.775
3 4 2.72 0.145 0.777 0.105 0.058 0.336
3 7 2.99 0.063 0.585 0.043 0.066 0.203
4 11 1.85 0.218 0.759 0.207 0.233 0.340
4 15 1.81 0.243 0.784 0.261 0.276 0.434
4 20 1.81 0.244 0.785 0.267 0.263 0.434
4 21 1.74 0.334 0.923 0.287 0.282 0.378
4 5 2.75 0.130 0.793 0.091 0.120 0.335
4 6 2.86 0.102 0.729 0.081 0.075 0.316
4 7 2.84 0.110 0.717 0.054 0.119 0.297
4 8 1.75 0.297 0.848 0.320 0.300 0.430
5 12 1.71 0.356 0.954 0.316 0.277 0.419
5 14 1.75 0.305 0.888 0.286 0.274 0.409
5 7 2.71 0.151 0.865 0.093 0.170 0.323
5 8 1.75 0.304 0.887 0.285 0.273 0.409
5 9 1.83 0.231 0.784 0.262 0.267 0.366
6 12 1.72 0.341 0.913 0.377 0.322 0.468
6 13 1.82 0.235 0.771 0.264 0.261 0.410
6 20 1.82 0.237 0.773 0.266 0.261 0.413
7 15 1.77 0.272 0.831 0.284 0.286 0.396
7 18 1.77 0.273 0.832 0.284 0.286 0.397
7 19 1.75 0.310 0.899 0.274 0.295 0.387
7 9 1.73 0.315 0.867 0.316 0.299 0.475



Table S1 Lagrange point data (g)Pd8H16

Bonding
Atoms Pair R[Å] bε bµ

Wiberg
index

NAO bond
order

Mayer
bond orders

1 13 1.77 0.283 0.839 0.285 0.279 0.416
1 15 1.75 0.291 0.858 0.290 0.277 0.407
1 2 2.68 0.162 0.878 0.142 0.187 0.387
1 21 1.76 0.284 0.840 0.285 0.279 0.417
1 22 1.75 0.291 0.857 0.289 0.276 0.406
1 8 2.68 0.162 0.878 0.142 0.187 0.387
2 11 1.75 0.291 0.858 0.290 0.276 0.406
2 12 1.75 0.292 0.859 0.290 0.277 0.408
2 13 1.77 0.284 0.840 0.285 0.279 0.417
2 14 1.77 0.282 0.838 0.284 0.278 0.416
2 6 2.68 0.162 0.878 0.141 0.186 0.386
3 10 1.75 0.291 0.858 0.289 0.276 0.406
3 11 1.75 0.293 0.860 0.291 0.277 0.407
3 24 1.77 0.284 0.840 0.286 0.279 0.417
3 4 2.68 0.162 0.879 0.140 0.186 0.385
3 6 2.68 0.162 0.878 0.140 0.186 0.386
3 9 1.77 0.285 0.842 0.286 0.280 0.418
4 16 1.75 0.290 0.856 0.289 0.276 0.405
4 19 1.75 0.292 0.859 0.290 0.277 0.407
4 20 1.77 0.283 0.839 0.284 0.279 0.416
4 7 2.67 0.163 0.879 0.141 0.186 0.386
4 9 1.76 0.285 0.842 0.286 0.280 0.418
5 15 1.75 0.292 0.859 0.290 0.277 0.407
5 16 1.75 0.293 0.860 0.291 0.277 0.408
5 17 1.76 0.284 0.840 0.285 0.279 0.417
5 23 1.77 0.282 0.837 0.284 0.278 0.415
5 7 2.68 0.162 0.878 0.141 0.186 0.386
5 8 2.68 0.162 0.877 0.141 0.186 0.386
6 14 1.76 0.284 0.841 0.286 0.279 0.418
6 19 1.75 0.291 0.858 0.289 0.276 0.406
6 22 1.75 0.293 0.860 0.290 0.277 0.408
6 24 1.77 0.283 0.839 0.284 0.279 0.416
7 10 1.75 0.292 0.859 0.290 0.277 0.408
7 17 1.77 0.282 0.838 0.285 0.279 0.416
7 18 1.75 0.292 0.859 0.290 0.277 0.407
7 20 1.76 0.284 0.841 0.285 0.279 0.417
8 12 1.75 0.291 0.857 0.289 0.276 0.406
8 18 1.75 0.291 0.858 0.290 0.277 0.407
8 21 1.77 0.283 0.839 0.285 0.279 0.416
8 23 1.76 0.285 0.841 0.286 0.279 0.418



Table S1 Lagrange point data (h)Pd9H22

Bonding
Atoms Pair R[Å] bε bµ

Wiberg
index

NAO bond
order

Mayer
bond orders

1 13 1.70 0.374 0.966 0.305 0.304 0.396
1 15 1.85 0.224 0.762 0.214 0.251 0.310
1 17 2.39 0.060 0.562 0.055 0.085 0.025
1 20 2.37 0.062 0.569 0.057 0.088 0.030
1 21 1.70 0.375 0.967 0.304 0.304 0.397
1 26 1.54 0.691 1.166 0.535 0.387 0.725
1 4 2.75 0.134 0.810 0.068 0.090 0.287
1 8 2.92 0.074 0.587 0.054 0.047 0.250
1 9 2.96 0.060 0.572 0.089 0.173 0.299
2 12 1.78 0.269 0.820 0.254 0.278 0.412
2 14 2.03 0.136 0.669 0.100 0.163 0.205
2 21 1.78 0.271 0.847 0.247 0.260 0.329
2 23 1.80 0.258 0.817 0.254 0.284 0.381
2 31 1.54 0.676 1.143 0.576 0.402 0.789
2 6 2.77 0.130 0.750 0.067 0.114 0.288
2 8 2.73 0.137 0.813 0.079 0.089 0.340
3 10 1.73 0.319 0.899 0.304 0.297 0.452
3 11 1.73 0.316 0.897 0.300 0.295 0.448
3 17 2.59 0.053 0.524 0.043 0.066 0.036
3 20 2.57 0.055 0.530 0.045 0.068 0.040
3 24 1.80 0.251 0.799 0.254 0.270 0.408
3 25 1.65 0.426 0.996 0.395 0.355 0.602
3 4 2.75 0.132 0.823 0.070 0.066 0.369
3 6 2.76 0.123 0.759 0.079 0.109 0.327
3 7 2.76 0.123 0.758 0.079 0.110 0.328
3 9 2.78 0.116 0.763 0.075 0.160 0.305
4 15 1.73 0.331 0.910 0.265 0.291 0.515
4 17 1.68 0.384 0.962 0.363 0.305 0.476
4 20 1.68 0.382 0.958 0.364 0.305 0.475
4 24 1.79 0.267 0.816 0.257 0.286 0.432
5 13 1.76 0.288 0.866 0.266 0.271 0.354
5 16 1.80 0.253 0.810 0.250 0.282 0.374
5 18 2.03 0.136 0.669 0.101 0.164 0.206
5 22 1.78 0.275 0.828 0.258 0.281 0.418
5 28 1.54 0.675 1.142 0.573 0.401 0.788
5 7 2.77 0.126 0.790 0.066 0.114 0.287
5 8 2.73 0.136 0.809 0.079 0.090 0.338
6 11 1.78 0.272 0.823 0.255 0.287 0.395
6 14 1.97 0.163 0.702 0.122 0.192 0.249
6 20 1.72 0.322 0.898 0.316 0.276 0.377
6 23 1.74 0.309 0.875 0.294 0.313 0.437
6 27 1.54 0.659 1.134 0.552 0.396 0.748
6 9 2.86 0.087 0.669 0.057 0.108 0.249
7 10 1.78 0.268 0.819 0.252 0.285 0.390
7 16 1.74 0.314 0.880 0.297 0.315 0.442
7 17 1.71 0.325 0.901 0.320 0.278 0.383
7 18 1.97 0.163 0.702 0.122 0.192 0.249
7 29 1.54 0.658 1.133 0.554 0.396 0.748
7 9 2.86 0.087 0.667 0.057 0.107 0.248
8 12 1.75 0.300 0.870 0.279 0.297 0.415
8 13 2.17 0.103 0.649 0.079 0.118 0.119
8 19 1.76 0.289 0.872 0.228 0.255 0.369
8 21 2.11 0.118 0.670 0.087 0.129 0.141
8 22 1.75 0.298 0.869 0.276 0.295 0.408
8 30 1.56 0.631 1.130 0.524 0.399 0.771
9 14 1.72 0.338 0.931 0.279 0.291 0.396
9 18 1.73 0.335 0.926 0.279 0.291 0.395
9 19 1.66 0.424 0.994 0.377 0.311 0.443
9 25 2.02 0.135 0.644 0.148 0.199 0.231
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