245 research outputs found

    More is the Same; Phase Transitions and Mean Field Theories

    Full text link
    This paper looks at the early theory of phase transitions. It considers a group of related concepts derived from condensed matter and statistical physics. The key technical ideas here go under the names of "singularity", "order parameter", "mean field theory", and "variational method". In a less technical vein, the question here is how can matter, ordinary matter, support a diversity of forms. We see this diversity each time we observe ice in contact with liquid water or see water vapor, "steam", come up from a pot of heated water. Different phases can be qualitatively different in that walking on ice is well within human capacity, but walking on liquid water is proverbially forbidden to ordinary humans. These differences have been apparent to humankind for millennia, but only brought within the domain of scientific understanding since the 1880s. A phase transition is a change from one behavior to another. A first order phase transition involves a discontinuous jump in a some statistical variable of the system. The discontinuous property is called the order parameter. Each phase transitions has its own order parameter that range over a tremendous variety of physical properties. These properties include the density of a liquid gas transition, the magnetization in a ferromagnet, the size of a connected cluster in a percolation transition, and a condensate wave function in a superfluid or superconductor. A continuous transition occurs when that jump approaches zero. This note is about statistical mechanics and the development of mean field theory as a basis for a partial understanding of this phenomenon.Comment: 25 pages, 6 figure

    Lattice calculation of 1+1^{-+} hybrid mesons with improved Kogut-Susskind fermions

    Get PDF
    We report on a lattice determination of the mass of the exotic 1+1^{-+} hybrid meson using an improved Kogut-Susskind action. Results from both quenched and dynamical quark simulations are presented. We also compare with earlier results using Wilson quarks at heavier quark masses. The results on lattices with three flavors of dynamical quarks show effects of sea quarks on the hybrid propagators which probably result from coupling to two meson states. We extrapolate the quenched results to the physical light quark mass to allow comparison with experimental candidates for the 1+1^{-+} hybrid meson. The lattice result remains somewhat heavier than the experimental result, although it may be consistent with the π1(1600)\pi_1(1600).Comment: 24 pages, 12 figures. Replaced to match published versio

    Ruling Out a Strongly-Interacting Standard Higgs Model

    Get PDF
    Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs mass, for relatively small values of the Higgs quartic coupling λ(μ)\lambda(\mu). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly-interacting standard Higgs model at energies above the Higgs mass, complementing earlier studies which excluded strong interactions at energies near the Higgs mass. The summation can be formulated in terms of an appropriate scale in the running coupling, μ=s/es/2.7\mu=\sqrt{s}/e\approx\sqrt{s}/2.7, so it can easily be incorporated in renormalization-group improved tree-level amplitudes as well as higher-order calculations.Comment: 29 pages, 6 figures. The complete paper including figures is also available via WWW at http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-236-96.ps.g

    Towards an Asymptotic-Safety Scenario for Chiral Yukawa Systems

    Full text link
    We search for asymptotic safety in a Yukawa system with a chiral U(NL)LU(1)RU(N_L)_L\otimes U(1)_R symmetry, serving as a toy model for the standard-model Higgs sector. Using the functional RG as a nonperturbative tool, the leading-order derivative expansion exhibits admissible non-Ga\ssian fixed-points for 1NL571 \leq N_L \leq 57 which arise from a conformal threshold behavior induced by self-balanced boson-fermion fluctuations. If present in the full theory, the fixed-point would solve the triviality problem. Moreover, as one fixed point has only one relevant direction even with a reduced hierarchy problem, the Higgs mass as well as the top mass are a prediction of the theory in terms of the Higgs vacuum expectation value. In our toy model, the fixed point is destabilized at higher order due to massless Goldstone and fermion fluctuations, which are particular to our model and have no analogue in the standard model.Comment: 16 pages, 8 figure

    Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System

    Full text link
    A simple model for the dynamics of the Magellanic Stream (MS), in the framework of modified gravity models is investigated. We assume that the galaxy is made up of baryonic matter out of context of dark matter scenario. The model we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In order to examine the compatibility of the overall properties of the MS under the MOG theory, the observational radial velocity profile of the MS is compared with the numerical results using the χ2\chi^2 fit method. In order to obtain the best model parameters, a maximum likelihood analysis is performed. We also compare the results of this model with the Cold Dark Matter (CDM) halo model and the other alternative gravity model that proposed by Bekenstein (2004), so called TeVeS. We show that by selecting the appropriate values for the free parameters, the MOG theory seems to be plausible to explain the dynamics of the MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy

    Three-Loop O(alpha_s^2 G_F M_t^2) Corrections to Hadronic Higgs Decays

    Full text link
    We calculate the top-quark-induced three-loop corrections of O(alpha_s^2 G_F M_t^2) to the Yukawa couplings of the first five quark flavours in the framework of the minimal standard model with an intermediate-mass Higgs boson, with mass M_H << 2M_t. The calculation is performed using an effective-Lagrangian approach implemented with the hard-mass procedure. As an application, we derive the O(alpha_s^2 G_F M_t^2) corrections to the H -> q q-bar partial decay widths, including the case q=b. The couplings of the Higgs boson to pairs of leptons and intermediate bosons being known to O(alpha_s^2 G_F M_t^2), this completes the knowledge of such corrections in the Higgs sector. We express the results both in the MS-bar and on-shell schemes of mass renormalization. We recover the notion that the QCD perturbation expansions exhibit a worse convergence behaviour in the on-shell scheme than they do in the MS-bar scheme.Comment: 23 pages (Latex), 9 figures (Postscript), accepted for publication in Nuclear Physics

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore