475 research outputs found

    A unified approach to engine cylinder pressure reconstruction using time-delay neural networks with crank kinematics or block vibration measurements

    Get PDF
    Closed-loop combustion control (CLCC) in gasoline engines can improve efficiency, calibration effort, and performance using different fuels. Knowledge of in-cylinder pressures is a key requirement for CLCC. Adaptive cylinder pressure reconstruction offers a realistic alternative to direct sensing, which is otherwise necessary as legislation requires continued reductions in CO2 and exhaust emissions. Direct sensing however is expensive and may not prove adequately robust. A new approach is developed for in-cylinder pressure reconstruction on gasoline engines. The approach uses Time-Delay feed-forward Artificial Neural Networks trained with the standard Levenberg-Marquardt algorithm. The same approach can be applied to reconstruction via measured crank kinematics obtained from a shaft encoder, or measured engine cylinder block vibrations obtained from a production knock sensor. The basis of the procedure is initially justified by examination of the information content within measured data, which is considered to be equally important as the network architecture and training methodology. Key hypotheses are constructed and tested using data taken from a 3-cylinder (DISI) engine to reveal the influence of the data information content on reconstruction potential. The findings of these hypotheses tests are then used to develop the methodology. The approach is tested by reconstructing cylinder pressure across a wide range of steady-state engine operation using both measured crank kinematics and block accelerations. The results obtained show a very marked improvement over previously published reconstruction accuracy for both crank kinematics and cylinder block vibration based reconstruction using measurements obtained from a multi-cylinder engine. The paper shows that by careful processing of measured engine data, a standard neural network architecture and a standard training algorithm can be used to very accurately reconstruct engine cylinder pressure with high levels of robustness and efficiency

    A review of evaporative cooling system concepts for engine thermal management in motor vehicles

    Get PDF
    Evaporative cooling system concepts proposed over the past century for engine thermal management in automotive applications are examined and critically reviewed. The purpose of the review is to establish evident system shortcomings and to identify remaining research questions that need to be addressed to enable this important technology to be adopted by vehicle manufacturers. Initially, the benefits of evaporative cooling systems are restated in terms of improved engine efficiency, reduced CO2 emissions, and improved fuel economy. An historical coverage follows of the proposed concepts dating back to 1918. Possible evaporative cooling concepts are then classified into four distinct classes and critically reviewed. This culminates in an assessment of the available evidence to establish the reasons why no system has yet made it to serial production. Then, by systematic examination of the critical areas in evaporative cooling systems for application to automotive engine cooling, remaining research challenges are identified

    Conjugate heat transfer predictions for subcooled boiling flow in a horizontal channel using a volume-of-fluid framework.

    Get PDF
    The accuracy of CFD-based heat transfer predictions have been examined of relevance to liquid cooling of IC engines at high engine loads where some nucleate boiling occurs. Predictions based on: i) the Reynolds Averaged Navier-Stokes (RANS) solution, and ii) Large Eddy Simulation (LES), have been generated. The purpose of these simulations is to establish the role of turbulence modelling on the accuracy and efficiency of heat transfer predictions for engine-like thermal conditions where published experimental data is available. A multi-phase mixture modelling approach, with a Volume-of-Fluid interface-capturing method, has been employed. To predict heat transfer in the boiling regime, the empirical boiling correlation of Rohsenow is used for both RANS and LES. The rate of vapour-mass generation at the wall surface is determined from the heat flux associated with the evaporation phase change. Predictions via CFD are compared with published experimental data showing that LES gives only slightly more accurate temperature predictions compared to RANS but at substantially higher computational cost.N/

    Expanding modes of reflection in design futuring

    Get PDF
    Design futuring approaches, such as speculative design, design fiction and others, seek to (re)envision futures and explore alternatives. As design futuring becomes established in HCI design research, there is an opportunity to expand and develop these approaches. To that end, by reflecting on our own research and examining related work, we contribute five modes of reflection. These modes concern formgiving, temporality, researcher positionality, real-world engagement, and knowledge production. We illustrate the value of each mode through careful analysis of selected design exemplars and provide questions to interrogate the practice of design futuring. Each reflective mode offers productive resources for design practitioners and researchers to articulate their work, generate new directions for their work, and analyze their own and others’ work.

    Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene

    Get PDF
    BACKGROUND: Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. METHODS AND FINDINGS: We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic β-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth. CONCLUSIONS: HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and diabetes later in life

    A Dimer of the Toll-Like Receptor 4 Cytoplasmic Domain Provides a Specific Scaffold for the Recruitment of Signalling Adaptor Proteins

    Get PDF
    The Toll-like receptor 4 (TLR4) is a class I transmembrane receptor expressed on the surface of immune system cells. TLR4 is activated by exposure to lipopolysaccharides derived from the outer membrane of Gram negative bacteria and forms part of the innate immune response in mammals. Like other class 1 receptors, TLR4 is activated by ligand induced dimerization, and recent studies suggest that this causes concerted conformational changes in the receptor leading to self association of the cytoplasmic Toll/Interleukin 1 receptor (TIR) signalling domain. This homodimerization event is proposed to provide a new scaffold that is able to bind downstream signalling adaptor proteins. TLR4 uses two different sets of adaptors; TRAM and TRIF, and Mal and MyD88. These adaptor pairs couple two distinct signalling pathways leading to the activation of interferon response factor 3 (IRF-3) and nuclear factor κB (NFκB) respectively. In this paper we have generated a structural model of the TLR4 TIR dimer and used molecular docking to probe for potential sites of interaction between the receptor homodimer and the adaptor molecules. Remarkably, both the Mal and TRAM adaptors are strongly predicted to bind at two symmetry-related sites at the homodimer interface. This model of TLR4 activation is supported by extensive functional studies involving site directed mutagenesis, inhibition by cell permeable peptides and stable protein phosphorylation of receptor and adaptor TIR domains. Our results also suggest a molecular mechanism for two recent findings, the caspase 1 dependence of Mal signalling and the protective effects conferred by the Mal polymorphism Ser180Leu

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
    corecore