8 research outputs found

    From degrader to producer: reversing the gallic acid metabolism of Pseudomonas putida KT2440

    No full text
    Data de publicació electrònica: 11-11-2022Gallic acid is a powerful antioxidant with multiple therapeutic applications, usually obtained from the acidic hydrolysis of tannins produced by many plants. As this process generates a considerable amount of toxic waste, the use of tannases or tannase-producing microorganisms has become a greener alternative over the last years. However, their high costs still impose some barriers for industrial scalability, requiring solutions that could be both greener and cost-effective. Since Pseudomonas putida KT2440 is a powerful degrader of gallic acid, its metabolism offers pathways that can be engineered to produce it from cheap and renewable carbon sources, such as the crude glycerol generated in biodiesel units. In this study, a synthetic operon with the heterologous genes aroG4, quiC and pobA* was developed and expressed in P. putida, based on an in silico analysis of possible metabolic routes, resulting in no production. Then, the sequences pcaHG and galTAPR were deleted from the genome of this strain to avoid the degradation of gallic acid and its main intermediate, the protocatechuic acid. This mutant was transformed with the vector containing the synthetic operon and was finally able to convert glycerol into gallic acid. Production assays in shaker showed a final concentration of 346.7 ± 0.004 mg L-1 gallic acid after 72 h

    Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari

    No full text
    Abstract Background Despite its ability to grow and produce high-value molecules using renewable carbon sources, two main factors must be improved to use Burkholderia sacchari as a chassis for bioproduction at an industrial scale: first, the lack of molecular tools to engineer this organism and second, the inherently slow growth rate and poly-3-hydroxybutyrate [P(3HB)] production using xylose. In this work, we have addressed both factors. Results First, we adapted a set of BglBrick plasmids and showed tunable expression in B. sacchari. Finally, we assessed growth rate and P(3HB) production through overexpression of xylose transporters, catabolic or regulatory genes. Overexpression of xylR significantly improved growth rate (55.5% improvement), polymer yield (77.27% improvement), and resulted in 71% of cell dry weight as P(3HB). Conclusions These values are unprecedented for P(3HB) accumulation using xylose as a sole carbon source and highlight the importance of precise expression control for improving utilization of hemicellulosic sugars in B. sacchari

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved

    BJS commission on surgery and perioperative care post-COVID-19

    No full text
    Background: Coronavirus disease 2019 (COVID-19) was declared a pandemic by the WHO on 11 March 2020 and global surgical practice was compromised. This Commission aimed to document and reflect on the changes seen in the surgical environment during the pandemic, by reviewing colleagues experiences and published evidence. Methods: In late 2020, BJS contacted colleagues across the global surgical community and asked them to describe how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had affected their practice. In addition to this, the Commission undertook a literature review on the impact of COVID-19 on surgery and perioperative care. A thematic analysis was performed to identify the issues most frequently encountered by the correspondents, as well as the solutions and ideas suggested to address them. Results: BJS received communications for this Commission from leading clinicians and academics across a variety of surgical specialties in every inhabited continent. The responses from all over the world provided insights into multiple facets of surgical practice from a governmental level to individual clinical practice and training. Conclusion: The COVID-19 pandemic has uncovered a variety of problems in healthcare systems, including negative impacts on surgical practice. Global surgical multidisciplinary teams are working collaboratively to address research questions about the future of surgery in the post-COVID-19 era. The COVID-19 pandemic is severely damaging surgical training. The establishment of a multidisciplinary ethics committee should be encouraged at all surgical oncology centres. Innovative leadership and collaboration is vital in the post-COVID-19 era

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified
    corecore