34 research outputs found

    On Flow Stagnation in a Tube Radiator

    Get PDF
    An analysis of the physical process for occurrence of flow stagnation in a space tube-radiator is performed and the mechanism and mathematic description for the flow stagnation are presented. Two causes for pressure drop unbalance between tubes of the radiator are identified: non-uniform cooling environment and different local flow resistances between the tubes. This analysis provides a theoretical basis for experimental simulations of the flow stagnation in a ground-based lab as well as two suggested methods to experimentally simulate flow stagnation. Criteria for the flow stagnation, depending on the viscosity data regressive polynomial, are derived from the extreme condition of the pressure drop in colder tubes. A preliminary numerical calculation is conducted for a space tube-radiator model which confirms the physical and mathematical analyses. The prediction by the criteria for flow stagnation in the tube-radiator model coincides with the numerical calculation result

    Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces

    Get PDF
    Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer

    NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    Get PDF
    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage

    Light Microscopy Module: An On-Orbit Microscope Planned for the Fluids and Combustion Facility on the International Space Station

    Get PDF
    The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties

    Plans and Recent Developments for Fluid Physics Experiments Aboard the ISS

    Get PDF
    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensable laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for Fluid Physics, NASA GRC is developing and testing the Pack Bed Reactor Experiment (PBRE), Zero Boil Off (ZBOT) Two Phase Flow Separator Experiment (TPFSE), Multiphase Flow Heat Transfer (MFHT) Experiment and the Electro-HydroDynamic (EHD) experiment. An overview each experiment, including its objectives, concept and status will be presented. In addition, data will be made available after a nominal period to NASAs Physical Science Informatics PSI database to the scientific community to enable additional analyses of results

    Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    Get PDF
    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed

    Light Microsopy Module, International Space Station Premier Automated Microscope

    Get PDF
    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese

    Caretaker Quality of Life in Rett Syndrome: Disorder Features and Psychological Predictors

    Full text link
    ObjectiveRett syndrome is a severe neurodevelopmental disorder affecting approximately one in 10,000 female births. The clinical features of Rett syndrome are known to impact both patients' and caretakers' quality of life in Rett syndrome. We hypothesized that more severe clinical features would negatively impact caretaker physical quality of life but would positively impact caretaker mental quality of life.MethodsParticipants were individuals enrolled in the Rett Natural History Study with a diagnosis of classic Rett syndrome. Demographic data, clinical disease features, caretaker quality of life, and measures of family function were assessed during clinic visits. The Optum SF-36v2 Health Survey was used to assess caretaker physical and mental quality of life (higher scores indicate better quality of life). Descriptive, univariate, and multivariate analyses were used to characterize relationships between child and caretaker characteristics and caretaker quality of life.ResultsCaretaker physical component scores (PCS) were higher than mental component scores (MCS): 52.8 (9.7) vs 44.5 (12.1). No differences were demonstrated between the baseline and 5-year follow-up. In univariate analyses, disease severity was associated with poorer PCS (P = 0.006) and improved MCS (P = 0.003). Feeding problems were associated with poorer PCS (P = 0.007) and poorer MCS (P = 0.018). In multivariate analyses, limitations in caretaker personal time and home conflict adversely affected PCS. Feeding problems adversely impacted MCS.ConclusionsCaretaker quality of life in Rett syndrome is similar to that for caretakers in other chronic diseases. Disease characteristics significantly impact quality of life, and feeding difficulties may represent an important clinical target for improving both child and caretaker quality of life. The stability of quality-of-life scores between baseline and five years adds important value

    Dietary reference values for sodium

    Get PDF
    Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) derived dietary reference values (DRVs) for sodium. Evidence from balance studies on sodium and on the relationship between sodium intake and health outcomes, in particular cardiovascular disease (CVD)-related endpoints and bone health, was reviewed. The data were not sufficient to enable an average requirement (AR) or population reference intake (PRI) to be derived. However, by integrating the available evidence and associated uncertainties, the Panel considers that a sodium intake of 2.0 g/day represents a level of sodium for which there is sufficient confidence in a reduced risk of CVD in the general adult population. In addition, a sodium intake of 2.0 g/day is likely to allow most of the general adult population to maintain sodium balance. Therefore, the Panel considers that 2.0 g sodium/day is a safe and adequate intake for the general EU population of adults. The same value applies to pregnant and lactating women. Sodium intakes that are considered safe and adequate for children are extrapolated from the value for adults, adjusting for their respective energy requirement and including a growth factor, and are as follows: 1.1 g/day for children aged 1\u20133 years, 1.3 g/day for children aged 4\u20136 years, 1.7 g/day for children aged 7\u201310 years and 2.0 g/day for children aged 11\u201317 years, respectively. For infants aged 7\u201311 months, an Adequate Intake (AI) of 0.2 g/day is proposed based on upwards extrapolation of the estimated sodium intake in exclusively breast-fed infants aged 0\u20136 months
    corecore