317 research outputs found

    Cold Nuclear Matter Effects on J/psi and Upsilon Production at the LHC

    Full text link
    The charmonium yields are expected to be considerably suppressed if a deconfined medium is formed in high-energy heavy-ion collisions. In addition, the bottomonium states, with the possible exception of the Upsilon(1S) state, are also expected to be suppressed in heavy-ion collisions. However, in proton-nucleus collisions the quarkonium production cross sections, even those of the Upsilon(1S), are also suppressed. These "cold nuclear matter" effects need to be accounted for before signals of the high density QCD medium can be identified in the measurements made in nucleus-nucleus collisions. We identify two cold nuclear matter effects important for midrapidity quarkonium production: "nuclear absorption", typically characterized as a final-state effect on the produced quarkonium state and shadowing, the modification of the parton densities in nuclei relative to the nucleon, an initial-state effect. We characterize these effects and study the energy, rapidity, and impact-parameter dependence of initial-state shadowing in this paper.Comment: to be published in Phys. Rev.

    Modified DMRG algorithm for the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange: Comparison with field theory at large J2/J1J_2/J_1

    Get PDF
    A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J1J_1, J2J_2 between first and second neighbors. The modified algorithm yields accurate results up to J2/J1≈4J_2/J_1 \approx 4 for the magnetic gap Δ\Delta to the lowest triplet state, the amplitude BB of the bond order wave (BOW) phase, the wavelength λ\lambda of the spiral phase, and the spin correlation length ξ\xi. The J2/J1J_2/J_1 dependences of Δ\Delta, BB, λ\lambda and ξ\xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.Comment: 7 pages, 8 figures, submitted to PR

    Exact Solutions of the Duffin Kemmer Petiau Equation for the Deformed Hulthen Potential

    Full text link
    Using the Nikiforov Uvarov method, an application of the relativistic Duffin Kemmer Petiau equation in the presence of a deformed Hulthen potential is presented for spin zero particles. We derived the first order coupled differential radial equations which enable the energy eigenvalues as well as the full wavefunctions to be evaluated by using of the Nikiforov Uvarov method that can be written in terms of the hypergeometric polynomials.Comment: 8 pages. submitted to Physica Script

    Wither the sliding Luttinger liquid phase in the planar pyrochlore

    Full text link
    Using series expansion based on the flow equation method we study the zero temperature properties of the spin-1/2 planar pyrochlore antiferromagnet in the limit of strong diagonal coupling. Starting from the limit of decoupled crossed dimers we analyze the evolution of the ground state energy and the elementary triplet excitations in terms of two coupling constants describing the inter dimer exchange. In the limit of weakly coupled spin-1/2 chains we find that the fully frustrated inter chain coupling is critical, forcing a dimer phase which adiabatically connects to the state of isolated dimers. This result is consistent with findings by O. Starykh, A. Furusaki and L. Balents (Phys. Rev. B 72, 094416 (2005)) which is inconsistent with a two-dimensional sliding Luttinger liquid phase at finite inter chain coupling.Comment: 6 pages, 4 Postscript figures, 1 tabl

    Lattice vs. continuum theory of the periodic Heisenberg chain

    Full text link
    We consider the detailed structure of low energy excitations in the periodic spin-1/2 XXZ Heisenberg chain. By performing a perturbative calculation of the non-linear corrections to the Gaussian model, we determine the exact coefficients of asymptotic expansions in inverse powers of the system length N for a large number of low-lying excited energy levels. This allows us to calculate eigenenergies of the lattice model up to order order N^-4, without having to solve the Bethe Ansatz equations. At the same time, it is possible to express the exact eigenstates of the lattice model in terms of bosonic modes.Comment: 17 pages, 8 Figures. The latest version can be found at http://www.physik.uni-kl.de/eggert/papers/index.htm

    Ab initio computation of d-d excitation energies in low-dimensional Ti and V oxychlorides

    Full text link
    Using a quantum chemical cluster-in-solid computational scheme, we calculate the local d-d excitation energies for two strongly correlated Mott insulators, the oxychlorides TiOCl and VOCl. TiOCl harbors quasi-one-dimensional spin chains made out of S = 1/2 Ti3+ ions while the electronic structure of VOCl displays a more two-dimensional character. We find in both cases that the lowest-energy d-d excitations are within the t2g subshell, starting at 0.34 eV and indicating that orbital degeneracies are significantly lifted. In the vanadium oxychloride, spin triplet to singlet excitations are calculated to be 1 eV higher in energy. For TiOCl, the computed d-level electronic structure and the symmetries of the wavefunctions are in very good agreement with resonant inelastic x-ray scattering results and optical absorption data. For VOCl, future resonant inelastic x-ray scattering experiments will constitute a direct test of the symmetry and energy of about a dozen of different d-d excitations that we predict here

    On the thermodynamic limit of form factors in the massless XXZ Heisenberg chain

    Get PDF
    We consider the problem of computing form factors of the massless XXZ Heisenberg spin-1/2 chain in a magnetic field in the (thermodynamic) limit where the size M of the chain becomes large. For that purpose, we take the particular example of the matrix element of the third component of spin between the ground state and an excited state with one particle and one hole located at the opposite ends of the Fermi interval (umklapp-type term). We exhibit its power-law decrease in terms of the size of the chain M, and compute the corresponding exponent and amplitude. As a consequence, we show that this form factor is directly related to the amplitude of the leading oscillating term in the long-distance asymptotic expansion of the two-point correlation function of the third component of spin.Comment: 28 page

    C5AC_5^A axial form factor from bubble chamber experiments

    Full text link
    A careful reanalysis of both Argonne National Laboratory and Brookhaven National Laboratory data for weak single pion production is done. We consider deuteron nuclear effects and normalization (flux) uncertainties in both experiments. We demonstrate that these two sets of data are in good agreement. For the dipole parametrization of C5A(Q2)C_5^A(Q^2), we obtain C5A(0)=1.19±0.08C_5^A(0)=1.19\pm 0.08, MA=0.94±0.03M_A=0.94\pm 0.03 GeV. As an application we present the discussion of the uncertainty of the neutral current 1π0\pi^0 production cross section, important for the T2K neutrino oscillation experiment.Comment: 16 pages, 8 figures, 2 table

    Discrete element modelling of rock communition in a cone crusher using a bonded particle model

    Get PDF
    It is known that discrete element method modelling (DEM) of rock size reduction can be achieved by two approaches: the population balance model (PBM) and the bonded particle model (BPM). However, only PBM has been successfully used in DEM modelling cone crusher in the literature. The aim of this paper is to explore the feasibility of using the BPM to represent the size reduction of rock experienced within the cone crusher chamber. The feed rock particles were represented by isotropic dense random packing agglomerates. The simulation results were compared with the PBM simulation results, and it was shown that the BPM cone crusher model was able to satisfactorily replicate the performance of a cone crusher as well and it can provide more accurate prediction of the percentage of the fine products. In addition, the novel contribution here is that the rock feed material comprises particles of realistic shapes which break into more realistically shaped fragments compared with the fragments with defined shapes in the PBM model
    • …
    corecore