72 research outputs found

    Pretreatment with beta-blockers and the frequency of hypokalemia in patients with acute chest pain

    Get PDF
    Plasma potassium concentration was measured at admission in 1234 patients who presented with acute chest pain. One hundred and ninety five patients were on P blockers before admission. The potassium concentrations of patients admitted early (within four hours of onsetof symptoms) were compared with those admitted later (4-18 hours after onset of symptoms). There was a transient fall in plasma potassium concentrations in patients not pre-treated with , B blockers. This was not seen in patients who had been on P blockers before admission. Nonselective, B blockers were more effective than cardioselective agents in maintaining concentrationsof plasma potassium. These findings suggest a mechanism for the beneficial effects of ,B blockers on morbidity and mortality in acute myocardial infarction

    Measurements of Distributed Strain During Impact Pile Driving

    Get PDF
    This paper reports the use of optical Fibre Bragg Grating (FBG) sensors to monitor the stress waves generated below ground during pile driving, combined with measurements using conventional pile driving analyzer (PDA) sensors mounted at the pile head. Fourteen tubular steel piles with a diameter of 508 mm and embedded length to diameter ratios of 6 to 20 were impact driven at an established chalk test site in Kent, UK. The pile shafts were instrumented with multiple FBG strain gauges and pile head PDA sensors, which monitored the piles’ responses under each hammer blow. A high frequency (5 kHz) fibre optic interrogator allowed a previously unseen resolution of the stress wave propagation along the pile. Estimates of the base soil resistances to driving and distributions of shaft shear resistances were found through signal matching that compared time series of pile head PDA measurements and FBG strains measured below ground surface. Numerical solutions of the one-dimensional wave equation were optimised by taking account of the data from multiple FBG gauges, leading to significant advantages that have potential for widespread application in cases where high resolution strain measurements are made

    Carbono orgânico dissolvido e biodisponibilidade de N e P como indicadores de qualidade do solo

    Get PDF
    Nas últimas décadas, qualidade do solo tem se tornado um tópico importante na ciência do solo. Embora esforços consideráveis tenham sido dedicados com o intuito de definir "qualidade do solo", ainda não há um conceito amplamente aceito pela comunidade cientifica. A seleção de índices qualitativos para definir qualidade do solo é uma tarefa extremamente difícil, e diversas propriedades químicas, físicas e biológicas tem sido sugeridas como potenciais indicadores. A matéria orgânica do solo está associada com processos químicos, físicos e biológicos no solo, e, portanto, é considerada um dos melhores indicadores de qualidade do solo. O manejo do solo pode influenciar significativamente a dinâmica do carbono orgânico e o ciclo de N, P, e S. Entretanto, mudanças na concentração total da matéria organica em resposta ao manejo pode ser dificil de ser detectada devido à variabilidade natural do solo. Quando comparada com a matéria orgânica total do solo, a fração mais prontamente disponível, como o carbono orgânico dissolvido (COD), é mais sensível às mudanças no manejo do solo a curto e médio prazo e, portanto, pode ser utilizada como indicador fundamental de qualidade do solo ou das alterações das condições naturais. Embora a fração dissolvida represente apenas uma pequena porção da matéria orgânica total do solo, o COD é móvel no solo e constitui uma importante fonte de C para os microorganismos, podendo facilmente refletir os efeitos de diferentes sistemas de manejo. Inúmeros métodos são utilizados para caracterizar o COD, mas os processos que influenciam sua mineralização e a disponibilidade dos elementos associado com a matéria orgânica (N, P, e S) ainda não são completamente entendidos. Pesquisas futuras devem buscar entender os processos que governam a dinâmica de nutrientes e do COD e como os mesmos afetam a qualidade do solo.Soil quality has become an important issue in soil science. Considerable attempts have been made to define soil quality, but a general concept has not yet been accepted by the scientific community. The selection of quantitative indices for soil quality is extremely difficult, and a considerable number of chemical, physical, and biochemical properties have been suggested as potential indicators of soil quality. Because soil organic matter (SOM) can be associated with different soil chemical, physical and biological processes, it has been widely considered as one of the best soil quality indicator. Land use can significantly influence dynamics of organic carbon and N, P, and S cycle. However, changes in total soil organic carbon (SOC) contents in response to land use may be difficult to detect because of the natural soil variability. In the short to medium term, biological properties and readily decomposable fractions of SOC, such as dissolved organic carbon (DOC), are much more sensitive to soil management than is SOM as a whole, and can be used as a key indicator of soil natural functions. Despite the fact that labile C accounts for a small portion of the total organic matter in the soils, DOC is the most mobile and important C-source for microorganisms, and can easily reflect the effects of land use on soil quality. Although several methods are used to characterize DOC, the factors influencing mineralization and bioavailability of elements associated with organic matter (N, P, and S) remains unclear. Future research should focus on the processes that govern DOC and nutrient dynamics and how they affect soil quality

    Can we IMPROVE cardiovascular outcomes through phosphate lowering in CKD? Rationale and protocol for the IMpact of Phosphate Reduction on Vascular End-points in Chronic Kidney Disease (IMPROVE-CKD) study

    Get PDF
    Introduction: Patients with chronic kidney disease (CKD) are at heightened cardiovascular risk, which has been associated with abnormalities of bone and mineral metabolism. A deeper understanding of these abnormalities should facilitate improved treatment strategies and patient-level outcomes, but at present there are few large, randomised controlled clinical trials to guide management. Positive associations between serum phosphate and fibroblast growth factor 23 (FGF-23) and cardiovascular morbidity and mortality in both the general and CKD populations have resulted in clinical guidelines suggesting that serum phosphate be targeted towards the normal range, although few randomised and placebo-controlled studies have addressed clinical outcomes using interventions to improve phosphate control. Early preventive measures to reduce the development and progression of vascular calcification, left ventricular hypertrophy and arterial stiffness are crucial in patients with CKD. Methods and analysis: We outline the rationale and protocol for an international, multicentre, randomised parallel-group trial assessing the impact of the non-calcium-based phosphate binder, lanthanum carbonate, compared with placebo on surrogate markers of cardiovascular disease in a predialysis CKD population—the IM pact of P hosphate R eduction O n V ascular E nd-points (IMPROVE)-CKD study. The primary objective of the IMPROVE-CKD study is to determine if the use of lanthanum carbonate reduces the burden of cardiovascular disease in patients with CKD stages 3b and 4 when compared with placebo. The primary end-point of the study is change in arterial compliance measured by pulse wave velocity over a 96-week period. Secondary outcomes include change in aortic calcification and biochemical parameters of serum phosphate, parathyroid hormone and FGF-23 levels. Ethics and dissemination: Ethical approval for the IMPROVE-CKD trial was obtained by each local Institutional Ethics Committee for all 17 participating sites in Australia, New Zealand and Malaysia prior to study commencement. Results of this clinical trial will be published in peer-reviewed journals and presented at conferences.Nicole Lioufas, Nigel D Toussaint, Eugenia Pedagogos, Grahame Elder, Sunil V Badve, Elaine Pascoe, Andrea Valks, Carmel Hawley, Geoffrey A Block, Neil C Boudville, Katrina Campbell, James D Cameron, Sylvia S M Chen, Randall J Faull, Stephen G Holt, Lai S Hooi, Dana Jackson, Meg J Jardine, David W Johnson, Peter G Kerr, Kenneth K Lau, Alicia Morrish, Vlado Perkovic, Kevan R Polkinghorne, Carol A Pollock, Donna Reidlinger, Laura Robison, Edward R Smith, Robert J Walker, Angela Yee Moon Wang

    Practical Recommendations for Long-term Management of Modifiable Risks in Kidney and Liver Transplant Recipients

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Investigations of pile-soil behaviour, with special reference to the foundations of offshore structures

    No full text
    In 2 vols.Available from British Library Document Supply Centre-DSC:DX201055 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
    corecore