52 research outputs found
Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells.
Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.We thank M. Jaeger (Radboudumc) for kindly providing flourescein
isothiocyanate-labelled Candida albicans. D. Williams (East
Tennessee State University) provided the β-glucan we used in our
initial experiments. H. Lemmers (Radboudumc) kindly prepared the
purified lipopolysaccharide used for stimulation of primary human
monocytes and macrophages. Part of the figures were prepared
using (among other software) Biorender.com. B.N. is supported
by a National Health and Medical Research Council (Australia)
Investigator Grant (APP1173314). This work was supported by
National Institutes of Health grants R01 HL144072, R01 CA220234
and P01 HL131478, as well as a Vici grant from the Dutch Research
Council NWO and an ERC Advanced Grant (all to W.J.M.M.). M.G.N.
was supported by a Spinoza grant from Dutch Research Council
NWO and an ERC Advanced Grant (#833247).S
Physical activity, sedentary behaviour, and childhood asthma: a European collaborative analysis
OBJECTIVES: To investigate the associations of physical activity (PA) and sedentary behaviour in early childhood with asthma and reduced lung function in later childhood within a large collaborative study. DESIGN: Pooling of longitudinal data from collaborating birth cohorts using meta-analysis of separate cohort-specific estimates and analysis of individual participant data of all cohorts combined. SETTING: Children aged 0-18 years from 26 European birth cohorts. PARTICIPANTS: 136 071 individual children from 26 cohorts, with information on PA and/or sedentary behaviour in early childhood and asthma assessment in later childhood. MAIN OUTCOME MEASURE: Questionnaire-based current asthma and lung function measured by spirometry (forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity) at age 6-18 years. RESULTS: Questionnaire-based and accelerometry-based PA and sedentary behaviour at age 3-5 years was not associated with asthma at age 6-18 years (PA in hours/day adjusted OR 1.01, 95% CI 0.98 to 1.04; sedentary behaviour in hours/day adjusted OR 1.03, 95% CI 0.99 to 1.07). PA was not associated with lung function at any age. Analyses of sedentary behaviour and lung function showed inconsistent results. CONCLUSIONS: Reduced PA and increased sedentary behaviour before 6 years of age were not associated with the presence of asthma later in childhood. © Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.The authors received no specific funding for this article. Funding information per cohort: ABCD: The ABCD study has been supported by grants from The Netherlands Organisation for Health Research and Development (ZonMW) and The Netherlands Heart Foundation. ABIS: Special thanks to the participating families in the ABIS study, and all staff at Obstetric departments and Well-Baby Clinics. ABIS has been supported by Swedish Research Council (K2005-72X-11242-11A and K2008-69X-20826-01-4) and the Swedish Child Diabetes Foundation (Barndiabetesfonden), JDRF Wallenberg Foundation (K 98-99D-12813-01A), Medical Research Council of Southeast Sweden (FORSS), and the Swedish Council for Working Life and Social Research (FAS2004-1775) and Östgöta Brandstodsbolag. BAMSE: This BAMSE birth cohort was supported by grants from the Swedish Research Council, the Swedish Research Council for Health, Working Life and Welfare, Formas, the Swedish Heart-Lung Foundation, the Swedish Asthma and Allergy Research Foundation, Region Stockholm (ALF project, and for cohort and database maintenance), and the European Research Council (TRIBAL, grant agreement 757919). CHOP: The CHOP study reported herein have been carried out with partial financial support from the Commission of the European Community, specific RTD Programme 'Quality of Life and Management of Living Resources', within the European Union's Seventh Framework Programme (FP7/2007-2013), project EarlyNutrition under grant agreement no. 289346, partial financial support from Polish Ministry of Science and Higher Education (2571/7.PR/2012/2), the EU H2020 project PHC-2014-DynaHealth under grant no. 633595 and the European Research Council Advanced Grant META-GROWTH (ERC-2012-AdG-no.322605). COPSAC2000: All funding received by COPSAC is listed on www.copsac.com. The Lundbeck Foundation (Grant no R16-A1694); The Ministry of Health (Grant no 903516); Danish Council for Strategic Research (Grant no 0603-00280B) and The Capital Region Research Foundation have provided core support to the COPSAC research center. DNBC: The Danish National Birth Cohort was established with a significant grant from the Danish National Research Foundation. Additional support was obtained from the Danish Regional Committees, the Pharmacy Foundation, the Egmont Foundation, the March of Dimes Birth Defects Foundation, the Health Foundation and other minor grants. The DNBC Biobank has been supported by the Novo Nordisk Foundation and the Lundbeck Foundation. EDEN: EU FP7 Framework MedAll project, National Institute for Research in Public Health (IRESP TGIR Cohorte Santé 2008 Program); National Agency for Research (ANR non-thematic programme); French Speaking Association for the Study of Diabetes and Metabolism (Alfediam); Mutuelle Générale de l’Éducation Nationale; Nestlé; French National Institute for Health Education (INPES); Paris‐Sud University; French National Istitute for Population Health Surveillance (InVS); French Agency for Environment Security (AFFSET); French Ministry of Health Perinatal Program; Inserm Nutrition Research Program; Institut Fédératif de Recherche and Cohort Program; French Ministry of Research; EURIP and FIRE doctoral school–Programme Bettencourt; Fondation pour la Recherche Médicale (FRM). G21: Generation XXI was supported by the European Regional Development Fund (ERDF) through the Operational Programme Competitiveness and Internationalisation and national funding from the Foundation for Science and Technology (FCT), Portuguese Ministry of Science, Technology and Higher Education under the project 'HIneC: When do health inequalities start? Understanding the impact of childhood social adversity on health trajectories from birth to early adolescence' (POCI-01-0145-FEDER-029567; Reference PTDC/SAU-PUB/29567/2017). It is also supported by the Unidade de Investigação em Epidemiologia–Instituto de Saúde Pública da Universidade do Porto (EPIUnit) (UIDB/04750/2020), Administração Regional de Saúde Norte (Regional Department of Ministry of Health) and Fundação Calouste Gulbenkian; PhD Grant SFRH/BD/108742/2015 (to SS) co-funded by FCT and the Human Capital Operational Programme (POCH/FSE Program); ACS is founded by a FCT Investigator contracts IF/01060/2015. Generation R: The Generation R Study is made possible by financial support from the Erasmus Medical Centre, Rotterdam, the Erasmus University Rotterdam and The Netherlands Organization for Health Research and Development. The project received funding for projects from the European Union's Horizon 2020 research and innovation programme (LIFECYCLE, grant agreement No 733206, 2016; EUCAN-Connect grant agreement No 824989; ATHLETE, grant agreement No 874583). LD received funding from the European Union's Horizon 2020 cofunded programme ERA-Net on Biomarkers for Nutrition and Health (ERA HDHL) (ALPHABET project (no 696295; 2017), ZonMW The Netherlands (no 529051014; 2017)). GINIplus: The GINIplus study was mainly supported for the first 3 years of the Federal Ministry for Education, Science, Research and Technology (interventional arm) and Helmholtz Zentrum Munich (former GSF) (observational arm). The 4 years, 6 years, 10 years and 15 years follow-up examinations of the GINIplus study were covered from the respective budgets of the five study centres (Helmholtz Zentrum Munich (former GSF), Research Institute at Marien-Hospital Wesel, LMU Munich, TU Munich and from 6 years onwards also from IUF - Leibniz Research-Institute for Environmental Medicine at the University of Düsseldorf) and a grant from the Federal Ministry for Environment (IUF Düsseldorf, FKZ 20462296). Further, the 15-year follow-up examination of the GINIplus study was supported by the Commission of the European Communities, the 7th Framework Program: MeDALL project, and as well by the companies Mead Johnson and Nestlé. The authors thank all the families for their participation in the GINIplus study. Furthermore, we thank all members of the GINIplus Study Group for their excellent work. The GINIplus Study group consists of the following: Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg (Heinrich J, Brüske I, Schulz H, Flexeder C, Zeller C, Standl M, Schnappinger M, Ferland M, Thiering E, Tiesler C); Department of Pediatrics, Marien-Hospital, Wesel (Berdel D, von Berg A); Ludwig-Maximilians-University of Munich, Dr von Hauner Children’s Hospital (Koletzko S); Child and Adolescent Medicine, University Hospital rechts der Isar of the Technical University Munich (Bauer CP, Hoffmann U); IUF- Environmental Health Research Institute, Düsseldorf (Schikowski T, Link E, Klümper C, Krämer U, Sugiri D). HUMIS: HUMIS is supported by the Research Council of Norway (NevroNor, grant number 226402). INMA Asturias: This study was funded by grants from, FIS-FEDER: PI04/2018, PI09/02311, PI13/02429, PI18/00909; Obra Social Cajastur/Fundación Liberbank, and Universidad de Oviedo. We thank Fundación NOE Alimerka. INMA Gipuzkoa: This study was funded by grants from Instituto de Salud Carlos III (FIS-PI06/0867, FIS-PI09/00090, FIS-PI13/02187 include FEDER funds), CIBERESP, Department of Health of the Basque Government (2005111093, 2009111069, 2013111089 and 2015111065), and the Provincial Government of Gipuzkoa (DFG06/002, DFG08/001 and DFG15/221) and annual agreements with the municipalities of the study area (Zumarraga, Urretxu, Legazpi, Azkoitia y Azpeitia y Beasain). INMA Menorca: This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; 97/0588; 00/0021-2; PI061756; PS0901958; PI14/00677 incl. FEDER funds), CIBERESP, Beca de la IV convocatoria de Ayudas a la Investigación en Enfermedades Neurodegenerativas de La Caixa, and EC Contract No. QLK4-CT-2000-00263. INMA Sabadell: This study was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; PI041436; PI081151 incl. FEDER funds; CPII/00018), CIBERESP, Generalitat de Catalunya-CIRIT 1999SGR 00241, Generalitat de Catalunya-AGAUR 2009 SGR 501, Fundació La marató de TV3 (090430), EU Commission (261357). ISGlobal is a member of the CERCA Programme, Generalitat de Catalunya. INMA Valencia: This study was funded by grants from UE (FP7-ENV-2011 cod 282957 and HEALTH.2010.2.4.5-1), Spain: ISCIII (Red INMA G03/176, CB06/02/0041; FIS-FEDER: PI03/1615, PI04/1509, PI04/1112, PI04/1931, PI05/1079, PI05/1052, PI06/1213, PI07/0314, PI09/02647, PI11/01007, PI11/02591, PI11/02038, PI13/1944, PI13/2032, PI14/00891, PI14/01687, PI16/1288, PI17/00663, and 19/1338; Miguel Servet-FEDER CP11/00178, CP15/00025 and CPII16/00051), Generalitat Valenciana: FISABIO (UGP 15-230, UGP-15-244, UGP-15-249, and AICO 2020/285), and Alicia Koplowitz Foundation 2017. KOALA: The KOALA cohort study was cofinanced by Friesland Foods (now FrieslandCampina), Netherlands Asthma Foundation (grant numbers 3.2.07.022 and 3.2.03.48) and Netherlands Heart Foundation (grant number 2014 T037), the Netherlands Organization for Health Research and Development (ZonMw Prevention Program number 1.210-00-090). The funding sources had no role in the study design and the collection, analysis and interpretation of data and the writing of the article and the decision to submit it for publication. Lifeways: The Lifeways study has been funded by the Health Research Board, Ireland, and the Irish Department of Health and Children’s Health Promotion Policy Unit. LISA: The LISA study was mainly supported by grants from the Federal Ministry for Education, Science, Research and Technology and in addition from Helmholtz Zentrum Munich (former GSF), Helmholtz Centre for Environmental Research—UFZ, Leipzig, Research Institute at Marien-Hospital Wesel, Pediatric Practice, Bad Honnef for the first 2 years. The 4 years, 6 years, 10 years and 15 years follow-up examinations of the LISA study were covered from the respective budgets of the involved partners (Helmholtz Zentrum Munich (former GSF), Helmholtz Centre for Environmental Research—UFZ, Leipzig, Research Institute at Marien-Hospital Wesel, Pediatric Practice, Bad Honnef, IUF—Leibniz-Research Institute for Environmental Medicine at the University of Düsseldorf) and in addition by a grant from the Federal Ministry for Environment (IUF Düsseldorf, FKZ 20462296). Further, the 15-year follow-up examination of the LISA study was supported by the Commission of the European Communities, the 7th Framework Program: MeDALL project. The authors thank all the families for their participation in the LISA study. Furthermore, we thank all members of the LISA Study Group for their excellent work. The LISA Study group consists of the following: Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology, Munich (Heinrich J, Schnappinger M, Brüske I, Ferland M, Schulz H, Zeller C, Standl M, Thiering E, Tiesler C, Flexeder C); Department of Pediatrics, Municipal Hospital 'St. Georg', Leipzig (Borte M, Diez U, Dorn C, Braun E); Marien Hospital Wesel, Department of Pediatrics, Wesel (von Berg A, Berdel D, Stiers G, Maas B); Pediatric Practice, Bad Honnef (Schaaf B); Helmholtz Centre of Environmental Research—UFZ, Department of Environmental Immunology/Core Facility Studies, Leipzig (Lehmann I, Bauer M, Röder S, Schilde M, Nowak M, Herberth G, Müller J); Technical University Munich, Department of Pediatrics, Munich (Hoffmann U, Paschke M, Marra S); Clinical Research Group Molecular Dermatology, Department of Dermatology and Allergy, Technische Universität München (TUM), Munich (Ollert M, J. Grosch). LRC: All phases of this study were supported by the Swiss National Science Foundation (grants: SNF 320030_182628, 32003B_162820, PDFMP3 137033, 32003B_162820, 32003B_144068, PZ00P3_147987) and Asthma UK 07/048. LUCKI: This study was supported by Maastricht University and the Public Health Service South Limburg. PIAMA: The Prevention and Incidence of Asthma and Mite Allergy Study has been funded by grants from the Netherlands Organization for Health Research and Development; the Netherlands Organization for Scientific Research; the Lung Foundation of the Netherlands; the Netherlands Ministry of Planning, Housing and the Environment; the Netherlands Ministry of Health, Welfare and Sport; and the National Institute for Public Health and the Environment. SEATON: Medical Research Council, Grant number: 80219, MR/K001035/1; Asthma UK, Grant numbers: 00/011, 02/017. STEPS Study: The Academy of Finland (grant no. 123571 and 121659); the Juho Vainio Foundation; the Foundation for Pediatric Research; the Finnish Medical Foundation. SWS: The SWS was supported by grants from the Medical Research Council (MC_UU_12011/4), Dunhill Medical Trust, British Heart Foundation, Food Standards Agency (contract no N05071), British Lung Foundation. National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, the European Union’s Seventh Framework Programme (FP7/2007-2013), project EarlyNutrition (grant 289346) and European Union’s Horizon 2020 research and innovation programme under grant agreement No 733206 (LifeCycle). WHISTLER: The authors (from the WHISTLER birth cohort) received no specific funding for this article. The WHISTLER birth cohort was supported with a grant from the Netherlands Organization for Health Research and Development (grant no. 2001-1-1322) and by an unrestricted grant from GlaxoSmithKline Netherlands
A YAP-centered mechanotransduction loop drives collective breast cancer cell invasion
Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion
Variants of the FADS1 FADS2 Gene Cluster, Blood Levels of Polyunsaturated Fatty Acids and Eczema in Children within the First 2 Years of Life
Association of genetic-variants in the FADS1-FADS2-gene-cluster with fatty-acid-composition in blood of adult-populations is well established. We analyze this genetic-association in two children-cohort-studies. In addition, the association between variants in the FADS-gene-cluster and blood-fatty-acid-composition with eczema was studied.
Data of two population-based-birth-cohorts in The Netherlands and Germany (KOALA, LISA) were pooled (n = 879) and analyzed by (logistic) regression regarding the mutual influence of single-nucleotide-polymorphisms (SNPs) in the FADS-gene-cluster (rs174545, rs174546, rs174556, rs174561, rs3834458), on polyunsaturated fatty acids (PUFA) in blood and parent-reported eczema until the age of 2 years. All SNPs were highly significantly associated with all PUFAs except for alpha-linolenic-acid and eicosapentaenoic-acid, also after correction for multiple-testing. All tested SNPs showed associations with eczema in the LISA-study, but not in the KOALA-study. None of the PUFAs was significantly associated with eczema neither in the pooled nor in the analyses stratified by study-cohort.
PUFA-composition in young children's blood is under strong control of the FADS-gene-cluster. Inconsistent results were found for a link between these genetic-variants with eczema. PUFA in blood was not associated with eczema. Thus the hypothesis of an inflammatory-link between PUFA and eczema by the metabolic-pathway of LC-PUFAs as precursors for inflammatory prostaglandins and leukotrienes could not be confirmed by these data
Fish and seafood consumption during pregnancy and the risk of asthma and allergic rhinitis in childhood: a pooled analysis of 18 European and US birth cohorts
Background: It has been suggested that prenatal exposure to n-3 long-chain fatty acids protects against asthma and other allergy-related diseases later in childhood. The extent to which fish intake in pregnancy protects against child asthma and rhinitis symptoms remains unclear. We aimed to assess whether fish and seafood consumption in pregnancy is associated with childhood wheeze, asthma and allergic rhinitis.
Methods: We pooled individual data from 60 774 mother-child pairs participating in 18 European and US birth cohort studies. Information on wheeze, asthma and allergic rhinitis prevalence was collected using validated questionnaires. The time periods of interest were: infancy (0-2 years), preschool age (3-4 years), and school age (5-8 years). We used multivariable generalized models to assess associations of fish and seafood (other than fish) consumption during pregnancy with child respiratory outcomes in cohort-specific analyses, with subsequent random-effects meta-analyses.
Results: The median fish consumption during pregnancy ranged from 0.44 times/week in The Netherlands to 4.46 times/week in Spain. Maternal fish intake during pregnancy was not associated with offspring wheeze symptoms in any age group nor with the risk of child asthma [adjusted meta-analysis relative risk (RR) per 1-time/week = 1.01, 95% confidence interval 0.97-1.05)] and allergic rhinitis at school age (RR = 1.01, 0.99-1.03). These results were consistently found in further analyses by type of fish and seafood consumption and in sensitivity analyses.
Conclusion: We found no evidence supporting a protective association of fish and seafood consumption during pregnancy with offspring symptoms of wheeze, asthma and allergic rhinitis from infancy to mid childhood.This work was supported by the European Community’s Seventh Framework Program [EU- FP7- HEALTH-2009-single-stage-241604]. Details of funding per cohort are available at IJE online
Screening for distant metastases in patients with ipsilateral breast tumor recurrence: the impact of different imaging modalities on distant recurrence-free interval
Purpose In patients with ipsilateral breast tumor recurrence (IBTR), the detection of distant disease determines whether the
intention of the treatment is curative or palliative. Therefore, adequate preoperative staging is imperative for optimal treatment
planning. The aim of this study is to evaluate the impact of conventional imaging techniques, including chest X-ray and/or
CT thorax-(abdomen), liver ultrasonography(US), and skeletal scintigraphy, on the distant recurrence-free interval (DRFI)
in patients with IBTR, and to compare conventional imaging with 18F-FDG PET-CT or no imaging at all.
Methods This study was exclusively based on the information available at time of diagnoses of IBTR. To adjust for differences in baseline characteristics between the three imaging groups, a propensity score (PS) weighted method was used.
Results Of the 495 patients included in the study, 229 (46.3%) were staged with conventional imaging, 89 patients (19.8%)
were staged with 18F-FDG PET-CT, and in 168 of the patients (33.9%) no imaging was used (N=168). After a follow-up of
approximately 5 years, 14.5% of all patients developed a distant recurrence as frst event after IBTR. After adjusting for the
PS weights, the Cox regression analyses showed that the diferent staging methods had no signifcant impact on the DRFI.
Conclusions This study showed a wide variation in the use of imaging modalities for staging IBTR patients in the Netherlands. After using PS weighting, no statistically signifcant impact of the diferent imaging modalities on DRFI was shown.
Based on these results, it is not possible to recommend staging for distant metastases using 18F-FDG PET-CT over conventional imaging technique
Analysis of shared heritability in common disorders of the brain
ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
- …