27 research outputs found

    Signs of immunosenescence correlate with poor outcome of mRNA COVID-19 vaccination in older adults

    Get PDF
    Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is effective in preventing COVID-19 hospitalization and fatal outcome. However, several studies indicated that there is reduced vaccine effectiveness among older individuals, which is correlated with their general health status1,2. How and to what extent age-related immunological defects are responsible for the suboptimal vaccine responses observed in older individuals receiving SARS-CoV-2 messenger RNA vaccine, is unclear and not fully investigated1,3–5. In this observational study, we investigated adaptive immune responses in adults of various ages (22–99 years old) receiving 2 doses of the BNT162b2 mRNA vaccine. Vaccine-induced Spike-specific antibody, and T and memory B cell responses decreased with increasing age. These responses positively correlated with the percentages of peripheral naïve CD4+ and CD8+ T cells and negatively with CD8+ T cells expressing signs of immunosenescence. Older adults displayed a preferred T cell response to the S2 region of the Spike protein, which is relatively conserved and a target for cross-reactive T cells induced by human ‘common cold’ coronaviruses. Memory T cell responses to influenza virus were not affected by age-related changes, nor the SARS-CoV-2-specific response induced by infection. Collectively, we identified signs of immunosenescence correlating with the outcome of vaccination against a new viral antigen to which older adults are immunologically naïve. This knowledge is important for the management of COVID-19 infections in older adults

    Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

    Get PDF
    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Publisher's version (útgefin grein).Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.Alexander von Humboldt-StiftungPeer Reviewe

    Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63

    No full text
    Currently, infections with SARS-Coronavirus-2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, are responsible for substantial morbidity and mortality worldwide. Older adults subjects > 60 years of age account for > 95% of the over one million fatal cases reported to date. It is unclear why in this age group SARS-CoV-2 infection causes more severe disease than in young adults. We hypothesized that differences in SARS-CoV-2 cross-reactive cellular immunity induced after infection with human coronaviruses (HCoVs), like OC43 and NL63, were at the basis of the differential mortality (and morbidity) observed after SARS-CoV-2 infection, because a small proportion of HCoV-specific T cells cross-react with SARS-CoV-2. Our data demonstrate that pre-existing T cell immunity induced by circulating human alpha- and beta-HCoVs is present in young adult individuals, but virtually absent in older adult subjects. Consequently, the frequency of cross-reactive T cells directed to the novel pandemic SARS-CoV-2 was minimal in most older adults. To the best of our knowledge, this is the first time that the presence of cross-reactive T cells to SARS-CoV-2 is compared in young and older adults. Our findings provide at least a partial explanation for the more severe clinical outcome of SARS-CoV-2 infection observed in the elderly. Moreover, this information could help to design efficacious vaccines for this age group, aiming at the induction of cell-mediated immunity

    Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63

    Get PDF
    Currently, infections with SARS-Coronavirus-2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, are responsible for substantial morbidity and mortality worldwide. Older adults subjects > 60 years of age account for > 95% of the over one million fatal cases reported to date. It is unclear why in this age group SARS-CoV-2 infection causes more severe disease than in young adults. We hypothesized that differences in SARS-CoV-2 cross-reactive cellular immunity induced after infection with human coronaviruses (HCoVs), like OC43 and NL63, were at the basis of the differential mortality (and morbidity) observed after SARS-CoV-2 infection, because a small proportion of HCoV-specific T cells cross-react with SARS-CoV-2. Our data demonstrate that pre-existing T cell immunity induced by circulating human alpha- and beta-HCoVs is present in young adult individuals, but virtually absent in older adult subjects. Consequently, the frequency of cross-reactive T cells directed to the novel pandemic SARS-CoV-2 was minimal in most older adults. To the best of our knowledge, this is the first time that the presence of cross-reactive T cells to SARS-CoV-2 is compared in young and older adults. Our findings provide at least a partial explanation for the more severe clinical outcome of SARS-CoV-2 infection observed in the elderly. Moreover, this information could help to design efficacious vaccines for this age group, aiming at the induction of cell-mediated immunity

    NCAN cross-disorder risk variant is associated with limbic gray matter deficits in healthy subjects and major depression

    No full text
    Genome-wide association studies have reported an association between NCAN rs1064395 genotype and bipolar disorder. This association was later extended to schizophrenia and major depression. However, the neurobiological underpinnings of these associations are poorly understood. NCAN is implicated in neuronal plasticity and expressed in subcortical brain areas, such as the amygdala and hippocampus, which are critically involved in dysfunctional emotion processing and regulation across diagnostic boundaries. We hypothesized that the NCAN risk variant is associated with reduced gray matter volumes in these areas. Gray matter structure was assessed by voxel-based morphometry on structural MRI data in two independent German samples (healthy subjects, n=512; depressed inpatients, n=171). All participants were genotyped for NCAN rs1064395. Hippocampal and amygdala region-of-interest analyses were performed within each sample. In addition, whole-brain data from the combined sample were analyzed. Risk (A)-allele carriers showed reduced amygdala and hippocampal gray matter volumes in both cohorts with a remarkable spatial overlap. In the combined sample, genotype effects observed for the amygdala and hippocampus survived correction for entire brain volume. Further effects were also observed in the left orbitofrontal cortex and the cerebellum/fusiform gyrus. We conclude that NCAN genotype is associated with limbic gray matter alterations in healthy and depressed subjects in brain areas implicated in emotion perception and regulation. The present data suggest that NCAN forms susceptibility to neurostructural deficits in the amygdala, hippocampus, and prefrontal areas independent of disease, which might lead to disorder onset in the presence of other genetic or environmental risk factors.Udo Dannlowski, Harald Kugel, Dominik Grotegerd, Ronny Redlich, Janina Suchy, Nils Opel, Thomas Suslow, Carsten Konrad, Patricia Ohrmann, Jochen Bauer, Tilo Kircher, Axel Krug, Andreas Jansen, Bernhard T Baune, Walter Heindel, Katharina Domschke, Andreas J Forstner, Markus M Nöthen, Jens Treutlein, Volker Arolt, Christa Hohoff, Marcella Rietschel, and Stephanie H Wit
    corecore