1,687 research outputs found

    Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces

    Get PDF
    The concept of slippery lubricant-infused surfaces has shown promising potential in antifouling for controlling detrimental biofilm growth. In this study, nontoxic silicone oil was either impregnated into porous surface nanostructures, referred to as liquid-infused surfaces (LIS), or diffused into a polydimethylsiloxane (PDMS) matrix, referred to as a swollen PDMS (S-PDMS), making two kinds of slippery surfaces. The slippery lubricant layers have extremely low contact angle hysteresis, and both slippery surfaces showed superior antiwetting performances with droplets bouncing off or rolling transiently after impacting the surfaces. We further demonstrated that water droplets can remove dust from the slippery surfaces, thus showing a “cleaning effect”. Moreover, “coffee-ring” effects were inhibited on these slippery surfaces after droplet evaporation, and deposits could be easily removed. The clinically biofilm-forming species P. aeruginosa (as a model system) was used to further evaluate the antifouling potential of the slippery surfaces. The dried biofilm stains could still be easily removed from the slippery surfaces. Additionally, both slippery surfaces prevented around 90% of bacterial biofilm growth after 6 days compared to the unmodified control PDMS surfaces. This investigation also extended across another clinical pathogen, S. epidermidis, and showed similar results. The antiwetting and antifouling analysis in this study will facilitate the development of more efficient slippery platforms for controlling biofouling

    Dynamical analysis of bacteria in microscopy movies

    Get PDF
    Recent advances in microscopy, computing power and image processing have enabled the analysis of ever larger datasets of movies of microorganisms to study their behaviour. However, techniques for analysing the dynamics of individual cells from such datasets are not yet widely available in the public domain. We recently demonstrated significant phenotypic heterogeneity in the adhesion of Escherichia coli bacteria to glass surfaces using a new method for the high-throughput analysis of video microscopy data. Here, we present an in-depth analysis of this method and its limitations, and make public our algorithms for following the positions and orientations of individual rod-shaped bacteria from time-series of 2D images to reconstruct their trajectories and characterise their dynamics. We demonstrate in detail how to use these algorithms to identify different types of adhesive dynamics within a clonal population of bacteria sedimenting onto a surface. The effects of measurement errors in cell positions and of limited trajectory durations on our results are discussed

    Effect of Several New and Currently Available Oxime Cholinesterase Reactivators on Tabun-intoxicated Rats

    Get PDF
    The therapeutical efficacies of eleven oxime-based acetylcholinesterase reactivators were compared in an in vivo (rat model) study of treatment of intoxication caused by tabun. In this group there were some currently available oximes (obidoxime, trimedoxime and HI-6) and the rest were newly synthesized compounds. The best reactivation efficacy for acetylcholinesterase in blood (expressed as percent of reactivation) among the currently available oximes was observed after administration of trimedoxime (16%) and of the newly synthesized K127 (22432) (25%). The reactivation of butyrylcholinesterase in plasma was also studied; the best reactivators were trimedoxime, K117 (22435), and K127 (22432), with overall reactivation efficacies of approximately 30%. Partial protection of brain ChE against tabun inhibition was observed after administration of trimedoxime (acetylcholinesterase 20%; butyrylcholinesterase 30%) and obidoxime (acetylcholinesterase 12%; butyrylcholinesterase 16%)

    Effect of Seven Newly Synthesized and Currently Available Oxime Cholinesterase Reactivators on Cyclosarin-Intoxicated Rats

    Get PDF
    Seven new oxime-based acetylcholinesterase reactivators were compared with three currently available ones (obidoxime, trimedoxime, HI-6) for their ability to lessen cholinesterase inhibition in blood and brain of cyclosarin-treated rats. Oximes were given at doses of 5% their LD50 along with 21 mg/kg atropine five min before the LD50 of cyclosarin (120 ug/kg) was administered. Blood and brain samples were collected 30 minutes later. The greatest difference between acetylcholinesterase inhibition in blood of cyclosarin-treated rats was found after administration of HI-6 (40%), compared to 22% for trimedoxime and 6% for obidoxime. Only two of the seven newly synthesized oximes had any effect (K203 at 7%, K156 at 5%). Effective oximes against cyclosarin-inhibited plasma butyrylcholinesterase were HI-6 (42%), trimedoxime (11%), and K156 (4%). The oximes were less effective in brain than in blood, with reactivation values for HI-6 30% against acetylcholinesterase and 10% against butyrylcholinesterase. Values for newly synthesized oximes were less than 10% for K206, K269 and K203

    Swimming in a crystal

    Get PDF
    We study catalytic Janus swimmers and Escherichia coli bacteria swimming in a two-dimensional colloidal crystal. The Janus swimmers orbit individual colloids and hop between colloids stochastically, with a hopping rate that varies inversely with fuel (hydrogen peroxide) concentration. At high fuel concentration, these orbits are stable for 100s of revolutions, and the orbital speed oscillates periodically as a result of hydrodynamic, and possibly also phoretic, interactions between the swimmer and the six neighbouring colloids. Motile E.~coli bacteria behave very differently in the same colloidal crystal: their circular orbits on plain glass are rectified into long, straight runs, because the bacteria are unable to turn corners inside the crystal

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≄6 to ≄9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore