15 research outputs found

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 x 10(-20)), ER-negative BC (P = 1.1 x 10(-13)), BRCA1-associated BC (P = 7.7 x 10(-16)) and triple negative BC (P-diff = 2 x 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 x 10(-3)) and ABHD8 (PPeer reviewe

    Iron–Quercetin Complex Preconditioning of Human Peripheral Blood Mononuclear Cells Accelerates Angiogenic and Fibroblast Migration: Implications for Wound Healing

    No full text
    Cell-based therapy is a highly promising treatment paradigm in ischemic disease due to its ability to repair tissue when implanted into a damaged site. These therapeutic effects involve a strong paracrine component resulting from the high levels of bioactive molecules secreted in response to the local microenvironment. Therefore, the secreted therapeutic can be modulated by preconditioning the cells during in vitro culturing. Herein, we investigated the potential use of magnetic resonance imaging (MRI) probes, the “iron–quercetin complex” or IronQ, for preconditioning peripheral blood mononuclear cells (PBMCs) to expand proangiogenic cells and enhance their secreted therapeutic factors. PBMCs obtained from healthy donor blood were cultured in the presence of the iron–quercetin complex. Differentiated preconditioning PBMCs were characterized by immunostaining. An enzyme-linked immunosorbent assay was carried out to describe the secreted cytokines. In vitro migration and tubular formation using human umbilical vein endothelial cells (HUVECs) were completed to investigate the proangiogenic efficacy. IronQ significantly increased mononuclear progenitor cell proliferation and differentiation into spindle-shape-like cells, expressing both hematopoietic and stromal cell markers. The expansion increased the number of colony-forming units (CFU-Hill). The conditioned medium obtained from IronQ-treated PBMCs contained high levels of interleukin 8 (IL-8), IL-10, urokinase-type-plasminogen-activator (uPA), matrix metalloproteinases-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α), as well as augmented migration and capillary network formation of HUVECs and fibroblast cells, in vitro. Our study demonstrated that the IronQ-preconditioning PBMC protocol could enhance the angiogenic and reparative potential of non-mobilized PBMCs. This protocol might be used as an adjunctive strategy to improve the efficacy of cell therapy when using PBMCs for ischemic diseases and chronic wounds. However, in vivo assessment is required for further validation

    In vitro and in vivo study of Tc-99m-MIBI encapsulated in PEG-liposomes: A promising radiotracer for tumour imaging

    No full text
    Encapsulation of technetium-99m sestamibi (Tc-99m-MIBI) in polyethyleneglycol-liposomes (Tc-99m-MIBI-PEG-liposomes) could extend the duration of its circulation in blood and alter its biodistribution, enabling its concentration in tumours to be increased. An original method to encapsulate Tc-99m-MIBI in PEG-liposomes is described. The Tc-99m-MIBI-PEG-liposomes were compared with free Tc-99m-MIBI with respect to (a) tumour availability (b) ability to distinguish between chemotherapy-sensitive and -resistant cells and (c) uptake ratio in tumour imaging. PEG-liposomal systems composed of distearoylphosphatidylcholine/cholesterol/PEG(2000)-distearoyl phosphatidylethanolamine and lissamine-rhodamine B-labelled liposomes were used. The encapsulation of 99mTc-MIBI in liposomes was achieved using the K+ diffusion potential method. We compared the uptake of free versus encapsulated Tc-99m-MIBI by sensitive and resistant erythroleukaemia (K562) and breast tumour (MCF-7ras) cells. To assess the internalisation of these liposomes into cells, rhodamine B-labelled PEG-liposomes were used and visualised by fluorescence microscopy. Biodistribution and imaging characteristics of encapsulated and free radiotracer were determined in rats and tumour-bearing nude mice. The efficiency of Tc-99m-MIBI encapsulation in PEG-liposomes was 50+/-5%. Use of Tc-99m-MIBI-PEG-liposomes did not impair the ability of this tracer to distinguish between chemotherapy-sensitive and -resistant tumour cells; the percentage of radio-activity accumulated in the sensitive K562 cells was 1.24+/-0.04%, as compared with 0.41+/-0.04% in the resistant K562 cells. One hour post injection in rats, PEG-liposomes showed a ten times higher activity in blood than free Tc-99m-MIBI, whereas activity of free Tc-99m-MIBI in kidneys and bladder was markedly higher than that of encapsulated Tc-99m-MIBI, indicating faster clearance of the free radiotracer. In the (MCF7-ras)-bearing nude mice, PEG-liposome uptake in tumour was two times that of free Tc-99m-MIBI. Summarising, the Tc-99m-MIBI-PEG-liposomes demonstrated a longer blood circulation time, enabled distinction between chemotherapy-sensitive and -resistant cells and improved tumour to background contrast in in vivo imaging. Tc-99m-MIBI-PEG-liposomes therefore show promising potential for tumour imaging

    Neuroprotection by neuropeptide Y in cell and animal models of Parkinson's disease

    No full text
    International audienceThis study was aimed to investigate the potential neuroprotective effect of neuropeptide Y (NPY) on the survival of dopaminergic cells in both in vitro and in animal models of Parkinson's disease (PD). NPY protected human SH-SY5Y dopaminergic neuroblastoma cells from 6-hydroxydopamine-induced toxicity. In rat and mice models of PD, striatal injection of NPY preserved the nigrostriatal dopamine pathway from degeneration as evidenced by quantification of (1) tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, levels of (2) striatal tyrosine hydroxylase and dopamine transporter, (3) dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) as well as (4) rotational behavior. NPY had no neuroprotective effects in mice treated with Y(2) receptor antagonist or in transgenic mice deficient for Y(2) receptor suggesting that NPY effects are mediated through this receptor. Stimulation of Y(2) receptor by NPY triggered the activation of both the ERK1/2 and Akt pathways but did not modify levels of brain derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor. These results open new perspectives in neuroprotective therapies using NPY and suggest potential beneficial effects in PD
    corecore