326 research outputs found

    Project Ares 3

    Get PDF
    The mission of Project Ares is to design and fabricate an Earth prototype, autonomous flying rover capable of flying on the Martian surface. The project was awarded to California State University, Northridge (CSUN) in 1989 where an in-depth paper study was completed. The second year's group, Project Ares 2, designed and fabricated a full-scale flight demonstration aircraft. Project Ares 3, the third and final group, is responsible for propulsion system design and installation, controls and instrumentation, and high altitude testing. The propulsion system consists of a motor and its power supply, geartrain, and propeller. The motor is a four-brush DC motor powered by a 50-V NiCd battery supply. A pulley and belt arrangement is used for the geartrain and includes light weight, low temperature materials. The propeller is constructed from composite materials which ensures high strength and light weight, and is specifically developed to provide thrust at extremely high altitudes. The aircraft is controlled with a ground-based radio control system and an autopilot which will activate in the event that the control signal is lost. A transponder is used to maintain radar contact for ground tracking purposes. The aircraft possesses a small, onboard computer for collecting and storing flight data. To safeguard the possibility of computer failure, all flight data is transmitted to a ground station via a telemetry system. An initial, unpowered, low-level test flight was completed in August of 1991. Testing of systems integration in the second low-level test flight resulted in loss of elevator control which caused considerable damage on landing. Complete failure analysis and repairs are scheduled for September of 1992

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (Ξ£ETPb) summed over 3.1<Ξ·<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) β€œnear-side” (Ξ”Ο•βˆΌ0) correlation that grows rapidly with increasing Ξ£ETPb. A long-range β€œaway-side” (Ξ”Ο•βˆΌΟ€) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Ξ£ETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and Ξ£ETPb dependence. The resultant Δϕ correlation is approximately symmetric about Ο€/2, and is consistent with a dominant cos⁑2Δϕ modulation for all Ξ£ETPb ranges and particle pT

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fbβˆ’1 of s=7β€…β€ŠTeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan Ξ² < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Zβ€² gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/Ξ³ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fbβˆ’1 in the e + e βˆ’ channel and 5.0 fbβˆ’1 in the ΞΌ + ΞΌ βˆ’channel. A Z β€² boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Zβ€² Models

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or Ο„ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, Ο†, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan Ξ² in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN

    Synergetic Effects of Granulocyte-Colony Stimulating Factor and Cognitive Training on Spatial Learning and Survival of Newborn Hippocampal Neurons

    Get PDF
    Granulocyte-Colony Stimulating Factor (G-CSF) is an endogenous hematopoietic growth factor known for its role in the proliferation and differentiation of cells of the myeloic lineage. Only recently its significance in the CNS has been uncovered. G-CSF attenuates apoptosis and controls proliferation and differentiation of neural stem cells. G-CSF activates upstream kinases of the cAMP response element binding protein (CREB), which is thought to facilitate the survival of neuronal precursors and to recruit new neurons into the dentate gyrus. CREB is also essential for spatial long-term memory formation. To assess the role and the potential of this factor on learning and memory-formation we systemically administered G-CSF in rats engaged in spatial learning in an eight-arm radial maze. G-CSF significantly improved spatial learning and increased in combination with cognitive training the survival of newborn neurons in the hippocampus as measured by bromodeoxyuridine and doublecortin immunohistochemistry. Additionally, G-CSF improved re-acquisition of spatial information after 26 days. These findings support the hypothesis that G-CSF can enhance learning and memory formation. Due to its easy applicability and its history as a well-tolerated hematological drug, the use of G-CSF opens up new neurological treatment opportunities in conditions where learning and memory-formation deficits occur

    Experimental β€˜Jet Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters

    Get PDF
    Background: Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings: In the present study, we investigated whether experimental β€˜jet lag ’ (i.e., phase advances of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance: Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learnin
    • …
    corecore