264 research outputs found

    Electronic and optical properties in non-uniformly shaped QDashes

    Full text link
    We theoretically study the optical properties and the electronic structure of highly elongated quantum dots (quantum dashes) and show how carrier trapping due to geometrical fluctuations of the confining potential affects the excitonic spectrum of the system. We focus on the study of the optical properties of a single exciton confined in the structure. The dependence of the absorption and emission intensities on the geometrical properties (depth and position) of the trapping center of a quantum dash is analyzed and the dependence of the degree of linear polarization on these geometrical parameters is studied in detail.Comment: 17 pages, 9 figure

    Electrical Characterization of Gold-DNA-Gold Structures in Presence of an External Magnetic Field by Means of I–V Curve Analysis

    Get PDF
    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I–V) curve. Acquisition of the I–V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors

    High-resolution Ce 3d-edge resonant photoemission study of CeNi_2

    Full text link
    Resonant photoemission (RPES) at the Ce 3d -> 4f threshold has been performed for alpha-like compound CeNi_2 with extremely high energy resolution (full width at half maximum < 0.2 eV) to obtain bulk-sensitive 4f spectral weight. The on-resonance spectrum shows a sharp resolution-limited peak near the Fermi energy which can be assigned to the tail of the Kondo resonance. However, the spin-orbit side band around 0.3 eV binding energy corresponding to the f_{7/2} peak is washed out, in contrast to the RPES spectrum at the Ce 3d -> 4f RPES threshold. This is interpreted as due to the different surface sensitivity, and the bulk-sensitive Ce 3d -> 4f RPES spectra are found to be consistent with other electron spectroscopy and low energy properties for alpha-like Ce-transition metal compounds, thus resolves controversy on the interpretation of Ce compound photoemission. The 4f spectral weight over the whole valence band can also be fitted fairly well with the Gunnarsson-Schoenhammer calculation of the single impurity Anderson model, although the detailed features show some dependence on the hybridization band shape and (possibly) Ce 5d emissions.Comment: 4 pages, 3 figur

    Autophagy and bacterial infectious diseases

    Get PDF
    Autophagy is a housekeeping process that maintains cellular homeostasis through recycling of nutrients and degradation of damaged or aged cytoplasmic constituents. Over the past several years, accumulating evidence has suggested that autophagy can function as an intracellular innate defense pathway in response to infection with a variety of bacteria and viruses. Autophagy plays a role as a specialized immunologic effector and regulates innate immunity to exert antimicrobial defense mechanisms. Numerous bacterial pathogens have developed the ability to invade host cells or to subvert host autophagy to establish a persistent infection. In this review, we have summarized the recent advances in our understanding of the interaction between antibacterial autophagy (xenophagy) and different bacterial pathogens

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Childhood rhabdomyosarcoma metastatic to bone marrow presenting with disseminated intravascular coagulation and acute tumour lysis syndrome: review of the literature apropos of two cases

    Get PDF
    The paper presents diagnostic and therapeutic difficulties in two adolescents with widespread rhabdomyosarcoma (RMS) presenting with severe haemorrhages resulting from disseminated intravascular coagulation (DIC) and with laboratory features of acute tumour lysis syndrome (ATLS). Other published cases of childhood RMS with DIC at admission have been listed and reviewed. It has been concluded that the clinical picture of a widespread RMS in children may resemble acute hematologic malignancy and pose a big diagnostic problem. That is why the presence of small blue round cells morphologically similar to lymphoblasts and/or myeloblasts in bone marrow (BM), lacking hematopoietic makers, should prompt the pathologist to consider possible diagnosis of RMS. Inclusion of desmin, MyoD1 and myogenin Myf4 to the immunohistochemical panel is obligatory in such cases. When the representative histopathological tumour specimens are difficult to obtain, the flow cytometric immunophenotyping of BM metastases could help the standard morphological/immunohistological diagnostic procedures and advance the diagnosis. Recently, the flow cytometric CD45− CD56+ immunophenotype together with Myf4 transcript has been assigned to RMS cells infiltrating BM. In children with disseminated RMS complicated with DIC rapid polychemotherapy aimed at diminishing the malignancy-triggered procoagulant activity should be initiated. However, in cases with concomitant ATLS the initial doses of chemotherapy should be reduced and the metabolic disorders and renal function monitored. The prognosis in children with RMS metastatic to BM with signs of DIC or ATLS at admission depends on the response to chemotherapy, however generally it is highly disappointing

    A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications

    Get PDF
    Differential chemosensors have emerged as next-generation systems due to their simplicity and favourable responsive properties to produce different signals upon selective binding of various analytes simultaneously. Nevertheless, given their inadequate fluorescence response and laborious synthetic procedures, only a few differential chemosensors have been developed so far. In this work, we have employed a single pot synthesis strategy to establish a new benzimidazole-based Schiff base type fluorogenic chemosensor (DFB) which differentially detects Cu2+ (detection limit (LOD) = 24.4 ± 0.5 nM) and Zn2+ (LOD = 2.18 ± 0.1 nM) through fluorescence “off-on” manner over the library of other metal cations in an aqueous medium. The DFB-derived ‘in situ’ complexes DFB-Cu2+ and DFB-Zn2+ showed fluorescence revival “on-off” responses toward cyanide (CN−) and bio-relevant pyrophosphate (P2O7 4--PPi) ions with a significantly low LOD of 9.43 ± 0.2 and 2.9 ± 0.1 nM, respectively, in water. We have demonstrated the phosphate group-specific binding capability of DFB-Zn2+ , by testing it with both ssDNA and dsDNA samples which displayed fluorescence “turn-off” response (LOD ∼10-7 M), similar to the PPi binding in an aqueous medium, indicating that it interacts explicitly with the phosphate backbone of DNA. We have also harnessed the DFB as a sequential fluorescent probe to detect Cu2+, Zn2+, CN− and P2O7 4- ions in human cervical (HeLa) and breast (MCF-7 and MDA-MB-231 (aggressive and invasive)) cancer cell lines. Moreover, we have explored the PPi recognition capability of DFB-Zn2+ in the polymerase-chain-reaction (PCR) products where PPi is one of the primary by-products during amplification of DNA

    Orexin-A and Orexin-B During the Postnatal Development of the Rat Brain

    Get PDF
    Orexin-A and orexin-B are hypothalamic neuropeptides isolated from a small group of neurons in the hypothalamus, which project their axons to all major parts of the central nervous system. Despite the extensive information about orexin expression and function at different parts of the nervous system in adults, data about the development and maturation of the orexin system in the brain are a bit contradictory and insufficient. A previous study has found expression of orexins in the hypothalamus after postnatal day 15 only, while others report orexins detection at embryonic stages of brain formation. In the present study, we investigated the distribution of orexin-A and orexin-B neuronal cell bodies and fibers in the brain at three different postnatal stages: 1-week-, 2-week-old and adult rats. By means of immunohistochemical techniques, we demonstrated that a small subset of cells in the lateral hypothalamus, and the perifornical and periventricular areas were orexin-A and orexin-B positive not only in 2-week-old and adult rats but also in 1-week-old animals. In addition, orexin-A and orexin-B expressing neuronal varicosities were found in many other brain regions. These results suggest that orexin-A and orexin-B play an important role in the early postnatal brain development. The widespread distribution of orexinergic projections through all these stages may imply an involvement of the two neurotransmitters in a large variety of physiological and behavioral processes also including higher brain functions like learning and memory

    Promising System for Selecting Healthy In Vitro–Fertilized Embryos in Cattle

    Get PDF
    Conventionally, in vitro–fertilized (IVF) bovine embryos are morphologically evaluated at the time of embryo transfer to select those that are likely to establish a pregnancy. This method is, however, subjective and results in unreliable selection. Here we describe a novel selection system for IVF bovine blastocysts for transfer that traces the development of individual embryos with time-lapse cinematography in our developed microwell culture dish and analyzes embryonic metabolism. The system can noninvasively identify prognostic factors that reflect not only blastocyst qualities detected with histological, cytogenetic, and molecular analysis but also viability after transfer. By assessing a combination of identified prognostic factors—(i) timing of the first cleavage; (ii) number of blastomeres at the end of the first cleavage; (iii) presence or absence of multiple fragments at the end of the first cleavage; (iv) number of blastomeres at the onset of lag-phase, which results in temporary developmental arrest during the fourth or fifth cell cycle; and (v) oxygen consumption at the blastocyst stage—pregnancy success could be accurately predicted (78.9%). The conventional method or individual prognostic factors could not accurately predict pregnancy. No newborn calves showed neonatal overgrowth or death. Our results demonstrate that these five predictors and our system could provide objective and reliable selection of healthy IVF bovine embryos
    corecore