283 research outputs found

    1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser

    Get PDF
    High pulse repetition rate (≥10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the development of an epitaxial process for the realization of high optical quality 1.55 µm In(Ga)As QDs on GaAs substrates, their incorporation into a SESAM, and the realization of the first 10 GHz repetition rate QD-SESAM modelocked laser at 1.55 µm, exhibiting ∼2 ps pulse width from an Er-doped glass oscillator (ERGO). With a high areal dot density and strong light emission, this QD structure is a very promising candidate for many other applications, such as laser diodes, optical amplifiers, non-linear and photonic crystal based devices

    Osteochondritis dissecans and Osgood Schlatter disease in a family with Stickler syndrome

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Stickler syndrome is among the most common autosomal dominant connective tissue disorders but is often unrecognised and therefore not diagnosed by clinicians. Despite much speculation, the cause of osteochondrosis in general and osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) in particular remain unclear. Etiological understanding is essential. We describe a pair of family subjects presented with OCD and OSS as a symptom complex rather than a diagnosis.</p> <p>Methods</p> <p>Detailed clinical and radiographic examinations were undertaken with emphasis on the role of MRI imaging. Magnetic resonance imaging may allow early prediction of articular lesion healing potential in patients with Stickler syndrome.</p> <p>Results</p> <p>The phenotype of Stickler syndrome can be diverse and therefore misleading. The expectation that the full clinical criteria of any given genetic disorder such as Stickler syndrome will always be present can easily lead to an underestimation of these serious inheritable disorders. We report here two family subjects, a male proband and his aunt (paternal sister), both presented with the major features of Stickler syndrome. Tall stature with marfanoid habitus, astigmatism/congenital vitreous abnormality and submucus cleft palate/cleft uvula, and enlarged painful joints with early onset osteoarthritis. Osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) were the predominating joint abnormalities.</p> <p>Conclusion</p> <p>We observed that the nature of the articular and physeal abnormalities was consistent with a localised manifestation of a more generalised epiphyseal dysplasia affecting the weight-bearing joints. In these two patients, OCD and OSS appeared to be the predominant pathologic musculoskeletal consequences of an underlying Stickler's syndrome. It is empirical to consider generalised epiphyseal dysplasia as a major underlying causation that might drastically affect the weight-bearing joints.</p

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Search for the standard model Higgs boson at LEP

    Get PDF

    Efficacy of motor imagery in post-stroke rehabilitation: a systematic review

    Get PDF
    BACKGROUND: Evaluation of how Motor Imagery and conventional therapy (physiotherapy or occupational therapy) compare to conventional therapy only in their effects on clinically relevant outcomes during rehabilitation of persons with stroke. DESIGN: Systematic review of the literature METHODS: We conducted an electronic database search in seven databases in August 2005 and also hand-searched the bibliographies of studies that we selected for the review.Two reviewers independently screened and selected all randomized controlled trials that compare the effects of conventional therapy plus Motor Imagery to those of only conventional therapy on stroke patients.The outcome measurements were: Fugl-Meyer Stroke Assessment upper extremity score (66 points) and Action Research Arm Test upper extremity score (57 points).Due to the high variability in the outcomes, we could not pool the data statistically. RESULTS: We identified four randomized controlled trials from Asia and North America. The quality of the included studies was poor to moderate. Two different Motor imagery techniques were used (three studies used audiotapes and one study had occupational therapists apply the intervention). Two studies found significant effects of Motor Imagery in the Fugl-Meyer Stroke Assessment: Differences between groups amounted to 11.0 (1.0 to 21.0) and 3.2 (-4 to 10.3) respectively and in the Action Research Arm Test 6.1 (-6.2 to 18.4) and 15.8 (0.5 to 31.0) respectively. One study did not find a significant effect in the Fugl-Meyer Stroke Assessment and Color trail Test (p = 0.28) but in the task-related outcomes (p > 0.001). CONCLUSION: Current evidence suggests that Motor imagery provides additional benefits to conventional physiotherapy or occupational therapy. However, larger and methodologically sounder studies should be conducted to assess the benefits of Motor imagery

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Effects of hand orientation on motor imagery - event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task

    Get PDF
    Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP) study to measure interference effects induced by hand orientation manipulations in a hand laterality judgement task. We hypothesized that this manipulation should only affect kinesthetic MI but not visual MI. The ERPs elicited by rotated hand stimuli contained the classic rotation related negativity (RRN) with respect to palm view stimuli. We observed that laterally rotated stimuli led to a more marked RRN than medially rotated stimuli. This RRN effect was observed when participants had their hands positioned in either a straight (control) or an inward rotated posture, but not when their hands were positioned in an outward rotated posture. Posture effects on the ERP-RRN have not previously been studied. Apparently, a congruent hand posture (hands positioned in an outward rotated fashion) facilitates the judgement of the otherwise more demanding laterally rotated hand stimuli. These ERP findings support a kinesthetic interpretation of MI involved in solving the hand laterality judgement task. The RRN may be used as a non-invasive marker for kinesthetic MI and seems useful in revealing the covert behavior of MI in e.g. rehabilitation programs

    MHO1, an Evolutionarily Conserved Gene, Is Synthetic Lethal with PLC1; Mho1p Has a Role in Invasive Growth

    Get PDF
    The novel protein Memo (Mediator of ErbB2 driven cell motility) was identified in a screen for ErbB2 interacting proteins and found to have an essential function in cell motility. Memo is evolutionarily conserved with homologs found in all branches of life; the human and yeast proteins have a similarity of >50%. In the present study we used the model organism S. cerevisiae to characterize the Memo-homologue Mho1 (Yjr008wp) and to investigate its function in yeast. In a synthetic lethal screen we found MHO1 as a novel synthetic lethal partner of PLC1, which encodes the single phospholipase C in yeast. Double-deleted cells lacking MHO1 and PLC1, proliferate for up to ten generations. Introduction of human Memo into the memoΔplc1Δ strain rescued the synthetic lethal phenotype suggesting that yeast and human proteins have similar functions. Mho1 is present in the cytoplasm and the nucleus of yeast cells; the same distribution of Memo was found in mammalian cells. None of the Memo homologues have a characteristic nuclear localization sequence, however, a conserved nuclear export sequence is found in all. In mammalian cells, blocking nuclear export with Leptomycin B led to nuclear Memo accumulation, suggesting that it is actively exported from the nucleus. In yeast MHO1 expression is induced by stress conditions. Since invasive growth in S. cerevisiea is also stress-induced, we tested Mho1's role in this response. MHO1 deletion had no effect on invasion induced by nutrient deprivation, however, Mho1 overexpression blocked the invasive ability of yeast cells, suggesting that Mho1 might be acting in a dominant negative manner. Taken together, our results show that MHO1 is a novel synthetic lethal interactor with PLC1, and that both gene products are required for proliferation. Moreover, a role for Memo in cell motility/invasion appears to be conserved across species

    Cytokine Production by Leukocytes of Military Personnel with Depressive Symptoms after Deployment to a Combat-Zone: A Prospective, Longitudinal Study

    Get PDF
    Major depressive disorder (MDD) is frequently diagnosed in military personnel returning from deployment. Literature suggests that MDD is associated with a pro-inflammatory state. To the best of our knowledge, no prospective, longitudinal studies on the association between development of depressive symptomatology and cytokine production by peripheral blood leukocytes have been published. The aim of this study was to investigate whether the presence of depressive symptomatology six months after military deployment is associated with the capacity to produce cytokines, as assessed before and after deployment. 1023 military personnel were included before deployment. Depressive symptoms and LPS- and T-cell mitogen-induced production of 16 cytokines and chemokines in whole blood cultures were measured before (T0), 1 (T1), and 6 (T2) months after return from deployment. Exploratory structural equation modeling (ESEM) was used for data reduction into cytokine patterns. Multiple group latent growth modeling was used to investigate differences in the longitudinal course of cytokine production between individuals with (n = 68) and without (n = 665) depressive symptoms at T2. Individuals with depressive symptoms after deployment showed higher T-cell cytokine production before deployment. Moreover, pre-deployment T-cell cytokine production significantly predicted the presence of depressive symptomatology 6 months after return. There was an increase in T-cell cytokine production over time, but this increase was significantly smaller in individuals developing depressive symptoms. T-cell chemokine and LPS-induced innate cytokine production decreased over time and were not associated with depressive symptoms. These results indicate that increased T-cell mitogen-induced cytokine production before deployment may be a vulnerability factor for development of depressive symptomatology in response to deployment to a combat-zone. In addition, deployment to a combat-zone affects the capacity of T-cells and monocytes to produce cytokines and chemokines until at least 6 months after return
    corecore