893 research outputs found

    On the strengthening and embrittlement mechanisms of an additively manufactured Nickel-base superalloy

    Get PDF
    The γ′ phase strengthened Nickel-base superalloy is one of the most significant dual-phase alloy systems for high-temperature engineering applications. The tensile properties of laser powder-bed-fused IN738LC superalloy in the as-built state have been shown to have both good strength and ductility compared with its post-thermal treated state. A microstructural hierarchy composed of weak texture, sub-micron cellular structures and dislocation cellular walls was promoted in the as-built sample. After post-thermal treatment, the secondary phase γ′ precipitated with various size and fraction depending on heat treatment process. For room-temperature tensile tests, the dominated deformation mechanism is planar slip of dislocations in the as-built sample while dislocations bypassing the precipitates via Orowan looping in the γ′ strengthened samples. The extraordinary strengthening effect due to the dislocation substructure in the as-built sample provides an addition of 372 MPa in yield strength. The results of our calculation are in agreement with experimental yield strength for all the three different conditions investigated. Strikingly, the γ′ strengthened samples have higher work hardening rate than as-built sample but encounter premature failure. Experimental evidence shows that the embrittlement mechanism in the γ′ strengthened samples is caused by the high dislocation hardening of the grain interior region, which reduces the ability to accommodate further plastic strain and leads to premature intergranular cracking. On the basis of these results, the strengthening micromechanism and double-edge effect of strength and ductility of Nickel-base superalloy is discussed in detail

    Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees

    Get PDF
    The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe

    There’s no such thing as a free lunch:evidence of altruism and agency from household expenditure responses to child nutrition programs

    Get PDF
    Many countries provide transfers for particular client groups such as children and often such transfers are in-kind rather than cash. However, this may, at least partially, crowd out private expenditures on the goods in question because they reduce the incentive for other individuals, like parents, to make altruistic transfers. They are often made to one household member on behalf of another so there may also be agency concerns: the recipient may divert some of the transfer away from the intended beneficiary. This paper throws light on these issues using three nutrition programs for children in UK households: free lunch at school for children from poor households; free milk to poor households with pre-school children; and free milk at day-care for pre-school children in attendance regardless of parental income. We provide difference in difference estimates based on a welfare reform and on variation in the timing of school holidays. These estimates are broadly consistent with estimates of a structural model that is identified using the same welfare reform. This gives us confidence in the interpretation of our estimates that the structural model provides but the simple difference-in-difference cannot

    Common Variation in ISL1 Confers Genetic Susceptibility for Human Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1) is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant–common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations

    Time Pressure Modulates Electrophysiological Correlates of Early Visual Processing

    Get PDF
    BACKGROUND: Reactions to sensory events sometimes require quick responses whereas at other times they require a high degree of accuracy-usually resulting in slower responses. It is important to understand whether visual processing under different response speed requirements employs different neural mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We asked participants to classify visual patterns with different levels of detail as real-world or non-sense objects. In one condition, participants were to respond immediately, whereas in the other they responded after a delay of 1 second. As expected, participants performed more accurately in delayed response trials. This effect was pronounced for stimuli with a high level of detail. These behavioral effects were accompanied by modulations of stimulus related EEG gamma oscillations which are an electrophysiological correlate of early visual processing. In trials requiring speeded responses, early stimulus-locked oscillations discriminated real-world and non-sense objects irrespective of the level of detail. For stimuli with a higher level of detail, oscillatory power in a later time window discriminated real-world and non-sense objects irrespective of response speed requirements. CONCLUSIONS/SIGNIFICANCE: Thus, it seems plausible to assume that different response speed requirements trigger different dynamics of processing

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results
    • …
    corecore