151 research outputs found

    Hippocampal Neurogenesis and Dendritic Plasticity Support Running-Improved Spatial Learning and Depression-Like Behaviour in Stressed Rats

    Get PDF
    Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress

    Observation of a resonant structure near the Ds+DsD_s^+ D_s^- threshold in the B+Ds+DsK+B^+\to D_s^+ D_s^- K^+ decay

    Get PDF
    An amplitude analysis of the B+Ds+DsK+B^+\to D_s^+ D_s^- K^+ decay is carried out to study for the first time its intermediate resonant contributions, using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. A near-threshold peaking structure, referred to as X(3960)X(3960), is observed in the Ds+DsD_s^+ D_s^- invariant-mass spectrum with significance greater than 12 standard deviations. The mass, width and the quantum numbers of the structure are measured to be 3956±5±103956\pm5\pm10 MeV, 43±13±843\pm13\pm8 MeV and JPC=0++J^{PC}=0^{++}, respectively, where the first uncertainties are statistical and the second systematic. The properties of the new structure are consistent with recent theoretical predictions for a state composed of ccˉssˉc\bar{c}s\bar{s} quarks. Evidence for an additional structure is found around 4140 MeV in the Ds+DsD_s^+ D_s^- invariant mass, which might be caused either by a new resonance with the 0++0^{++} assignment or by a J/ψϕDs+DsJ/\psi \phi\leftrightarrow D_s^+ D_s^- coupled-channel effect.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-018.html (LHCb public pages

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at s=13 TeV

    Get PDF
    A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.A search has been performed for heavy resonances decaying to ZZ or ZW in 2l2q final states, with two charged leptons (l = e, mu) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W' bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb(-1) recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.Peer reviewe

    Search for the pair production of light top squarks in the e(+/-)mu(-/+) final state in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for the production of a pair of top squarks at the LHC is presented. This search targets a region of parameter space where the kinematics of top squark pair production and top quark pair production are very similar, because of the mass difference between the top squark and the neutralino being close to the top quark mass. The search is performed with 35.9 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13 TeV, collected by the CMS detector in 2016, using events containing one electron-muon pair with opposite charge. The search is based on a precise estimate of the top quark pair background, and the use of the M-T2 variable, which combines the transverse mass of each lepton and the missing transverse momentum. No excess of events is found over the standard model predictions. Exclusion limits are placed at 95% confidence level on the production of top squarks up to masses of 208 GeV for models with a mass difference between the top squark and the lightest neutralino close to that of the top quark.Peer reviewe

    Combination of CMS searches for heavy resonances decaying to pairs of bosons or leptons

    Get PDF
    CMS Collaboration: et al.A statistical combination of searches for heavy resonances decaying to pairs of bosons or leptons is presented. The data correspond to an integrated luminosity of 35.9 fb collected during 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. The data are found to be consistent with expectations from the standard model background. Exclusion limits are set in the context of models of spin-1 heavy vector triplets and of spin-2 bulk gravitons. For mass-degenerate W′ and Z′ resonances that predominantly couple to the standard model gauge bosons, the mass exclusion at 95% confidence level of heavy vector bosons is extended to 4.5 TeV as compared to 3.8 TeV determined from the best individual channel. This excluded mass increases to 5.0 TeV if the resonances couple predominantly to fermions.Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias

    Measurement of B_{s}^{0} meson production in pp and PbPb collisions at \sqrt{SNN}

    Get PDF
    The production cross sections of B_{s}^{0} mesons and charge conjugates are measured in proton-proton (pp) and PbPb collisions via the exclusive decay channel B_{s}^{0}→J/ψϕ→μ^{+}μ^{−}K^{+}K^{−} at a center-of-mass energy of 5.02 TeV per nucleon pair and within the rapidity range |y|<2.4 using the CMS detector at the LHC. The pp measurement is performed as a function of transverse momentum (p_{T}) of the B_{s}^{0} mesons in the range of 7 to 50 GeV/c and is compared to the predictions of perturbative QCD calculations. The B_{s}^{0} production yield in PbPb collisions is measured in two p_{T} intervals, 7 to 15 and 15 to 50 GeV/c, and compared to the yield in pp collisions in the same kinematic region. The nuclear modification factor (R_{AA}) is found to be 1.5±0.6(stat)±0.5(syst) for 7–15 GeV/c, and 0.87±0.30(stat)±0.17(syst) for 15–50 GeV/c, respectively. Within current uncertainties, the B_{s}^{0} results are consistent with models of strangeness enhancement, and suppression by parton energy loss, as observed for the B+ mesons

    Search for Higgs boson pair production in the gamma gamma b(b)over-bar final state in pp collisions at root s=13 TeV

    Get PDF
    A search is presented for the production of a pair of Higgs bosons, where one decays into two photons and the other one into a bottom quark-antiquark pair. The analysis is performed using proton-proton collision data at root s = 13 TeV recorded in 2016 by the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1) . The results are in agreement with standard model (SM) predictions. In a search for resonant production, upper limits are set on the cross section for new spin-0 or spin-2 particles. For the SM-like nonresonant production hypothesis, the data exclude a product of cross section and branching fraction larger than 2.0 fb at 95% confidence level (CL), corresponding to about 24 times the SM prediction. Values of the effective Higgs boson self-coupling K X are constrained to be within the range -11 < K-lambda < 17 at 95% CL, assuming all other Higgs boson couplings are at their SM value. The constraints on K-lambda, are the most restrictive to date. (C) 2018 The Author(s). Published by Elsevier B.V.Peer reviewe

    Measurement of the tt¯ production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at √s = 13 TeV

    Get PDF
    A measurement of the top quark–antiquark pair production cross section σtt¯ in proton–proton collisions at a centre-of-mass energy of 13TeV is presented. The data correspond to an integrated luminosity of 35.9fb−1, recorded by the CMS experiment at the CERN LHC in 2016. Dilepton events (e ± μ ∓, μ+μ−, e+e−) are selected and the cross section is measured from a likelihood fit. For a top quark mass parameter in the simulation of mMCt=172.5GeV the fit yields a measured cross section σtt¯=803±2(stat)±25(syst)±20(lumi)pb, in agreement with the expectation from the standard model calculation at next-to-next-to-leading order. A simultaneous fit of the cross section and the top quark mass parameter in the POWHEG simulation is performed. The measured value of mMCt=172.33±0.14(stat)+0.66−0.72(syst)GeV is in good agreement with previous measurements. The resulting cross section is used, together with the theoretical prediction, to determine the top quark mass and to extract a value of the strong coupling constant with different sets of parton distribution functions

    Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two bquarks and two tau leptons in proton-proton collisions at root s=13 TeV The CMS Collaboration

    Get PDF
    A search for an exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed for the first time in the final state with two b quarks and two tau leptons. The search is motivated in the context of models of physics beyond the standard model (SM), such as two Higgs doublet models extended with a complex scalar singlet (2HDM + S), which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb(-1), accumulated by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. Masses of the pseudoscalar boson between 15 and 60 GeVare probed, and no excess of events above the SM expectation is observed. Upper limits between 3 and 12% are set on the branching fraction B(h -> aa -> 2 tau 2b) assuming the SM production of the Higgs boson. Upper limits are also set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different 2HDM + S scenarios. Assuming the SM production cross section for the Higgs boson, the upper limit on this quantity is as low as 20% for a mass of the pseudoscalar of 40 GeV in the NMSSM. (C) 2018 The Author(s). Published by Elsevier B.V.Peer reviewe
    corecore