508 research outputs found

    Geometrization of some quantum mechanics formalism

    Get PDF
    There were many attempts to geometrize electromagnetic field and find out new interpretation for quantum mechanics formalism. The distinctive feature of this work is that it combines geometrization of electromagnetic field and geometrization of material field within the unique topological idea. According to the suggested topological interpretation, the Dirac equations for a free particle and for a hydrogen atom prove to be the group--theoretical relations that account for the symmetry properties of localized microscopic deviations of the space--time geometry from the pseudoeuclidean one (closed topological 4-manifolds). These equations happen to be written in universal covering spaces of the above manifolds. It is shown that "long derivatives" in Dirac equation for a hydrogen atom can be considered as covariant derivatives of spinors in the Weyl noneuclidean 4-space and that electromagnetic potentials can be considered as connectivities in this space. The gauge invariance of electromagnetic field proves to be a natural consequence of the basic principles of the proposed geometrical interpretation. Within the suggested concept, atoms have no inside any point-like particles (electrons) and this can give an opportunity to overcome the difficulties of atomic physics connected with the many-body problem.Comment: 9 page

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation

    Full text link
    [EN] Curve squeal is an intense tonal noise occurring when a rail vehicle negotiates a sharp curve. The phenomenon can be considered to be chaotic, with a widely differing likelihood of occurrence on different days or even times of day. The term curve squeal may include several different phenomena with a wide range of dominant frequencies and potentially different excitation mechanisms. This review addresses the different squeal phenomena and the approaches used to model squeal noise; both time-domain and frequency-domain approaches are discussed and compared. Supporting measurements using test rigs and field tests are also summarised. A particular aspect that is addressed is the excitation mechanism. Two mechanisms have mainly been considered in previous publications. In many early papers the squeal was supposed to be generated by the so-called falling friction characteristic in which the friction coefficient reduces with increasing sliding velocity. More recently the mode coupling mechanism has been raised as an alternative. These two mechanisms are explained and compared and the evidence for each is discussed. Finally, a short review is given of mitigation measures and some suggestions are offered for why these are not always successful.Squicciarini, G.; Thompson, D.; Ding, B.; Baeza González, LM. (2018). A state-of-the-art review of curve squeal noise: Phenomena, mechanisms, modelling and mitigation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 139:3-41. https://doi.org/10.1007/978-3-319-73411-8_1S341139Anderson, D., Wheatley, N., Fogarty, B., Jiang, J., Howie, A., Potter, W.: Mitigation of curve squeal noise in Queensland, New South Wales and South Australia. In: Conference on Railway Engineering. pp. 625–636, Perth, Australia (2008)Hanson, D., Jiang, J., Dowdell, B., Dwight, R.: Curve squeal: causes, treatments and results. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, vol. 249, pp. 6316–6323. Melbourne, Australia (2014)Rudd, M.J.: Wheel/rail noise—part II: wheel squeal. J. Sound Vib. 46(3), 381–394 (1976)Remington, P.J.: Wheel/rail squeal and impact noise: what do we know? What don’t we know? Where do we go from here? J. Sound Vib. 116(2), 339–353 (1987)Remington, P.J.: Wheel/rail rolling noise: what do we know? What don’t we know? Where do we go from here? J. Sound Vib. 120(2), 203–226 (1988)Wickens, A.H.: Fundamentals of Rail Vehicle Dynamics, Guidance and Stability. Swets & Zeitlinger, Lisse (2003)Thompson, D.J.: Railway Noise and Vibration: Mechanisms, Modelling and Mitigation. Elsevier, Oxford (2009)Kalker, J.J.: Three Dimensional Elastic Bodies in Rolling Contact. Kluwer academic publishers, Dordrecht (1990)Vermeulen, P.J., Johnson, K.L.: Contact of nonspherical elastic bodies transmitting tangential forces. J. Appl. Mech. 31(2), 338–340 (1964)Shen, Z.Y., Hedrick, J.K., Elkins, J.A.: A comparison of alternative creep-force models for rail vehicle dynamic analysis. In: Proceedings of 8th IAVSD Symposium, Cambridge MA, Swets and Zeitlinger, Lisse, pp. 591–605 (1983)Huang, Z.Y.: Theoretical Modelling of Railway Curve Squeal. Ph.D. thesis, University of Southampton, UK (2007)Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. J. Appl. Math. Mech. 83(8), 524–534 (2003)Sinou, J.J., Jezequel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Eur. J. Mech.-A/Solids 26(1), 106–122 (2007)Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003)Ghazaly, N.M., El-Sharkawy, M., Ahmed, I.: A review of automotive brake squeal mechanisms. J. Mech. Des. Vibr. 1(1), 5–9 (2013)Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1(3–4), 207–231 (2005)Dorf, R.C., Bishop, R.H.: Modern Control Systems, 11th edn. Prentice Hall. (2008)De Beer, F.G., Janssens, M.H.A., Kooijman, P.P., van Vliet, W.J.: Curve squeal of railbound vehicles (part 1): frequency domain calculation model. In: Proceedings of Internoise, vol. 3, pp. 1560–1563. Nice, France (2000)Von Stappenbeck, H.: Das Kurvengeräusch der Straßenbahn. Möglichkeiten zu seiner Unterdrückung. Z. VDI 96(6), 171–175 (1954)Van Ruiten, C.J.M.: Mechanism of squeal noise generated by trams. J. Sound Vib. 120(2), 245–253 (1988)Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 1st report, on frequency of squeal. Bull. Jpn. Soc. Mech. Eng. 25, 1127–1134 (1982)Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 2nd report, mechanism of specific squeal frequency. Bull. Jpn. Soc. Mech. Eng. 27, 301–308 (1984)Nakai, M., Chiba, Y., Yokoi, M.: Railway wheel squeal: 3rd report, squeal of a disk simulating a wheel in internal resonances. Bull. Jpn. Soc. Mech. Eng. 28, 500–507 (1985)Schneider, E., Popp, K., Irretier, H.: Noise generation in railway wheels due to rail-wheel contact forces. J. Sound Vib. 120(2), 227–244 (1988)Kraft, K.: Der Einfluß der Fahrgeschwindigkeit auf den Haftwert zwischen Rad und Schiene. Arch. für Eisenbahntechnik 22, 58–78 (1967)Fingberg, U.: A model of wheel-rail squealing noise. J. Sound Vib. 143(3), 365–377 (1990)Périard, F.: Wheel-Rail Noise Generation: Curve Squealing by Trams. Ph.D. thesis, Technische Universiteit Delft (1998)Heckl, M.A., Abrahams, I.D.: Curve squeal of train wheels, part 1: mathematical model for its generation. J. Sound Vib. 229(3), 669–693 (2000)Heckl, M.A.: Curve squeal of train wheels, part 2: which wheel modes are prone to squeal? J. Sound Vib. 229(3), 695–707 (2000)Heckl, M.A.: Curve squeal of train wheels: unstable modes and limit cycles. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 458, 1949–1965 (2002)Liu, X., Meehan, P.A.: Wheel squeal noise: a simplified model to simulate the effect of rolling speed and angle of attack. J. Sound Vib. 338, 184–198 (2015)Meehan, P.A., Liu, X.: Analytical prediction and investigation of wheel squeal amplitude. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 69–80. Springer, Heidelberg (2018)Kooijman, P.P., Van Vliet, W.J., Janssens, M.H.A., De Beer, F.G.: Curve squeal of railbound vehicles (part 2): set-up for measurement of creepage dependent friction coefficient. In: Proceedings of Internoise, vol. 3, pp. 1564–1567. Nice, France (2000)De Beer, F.G., Janssens, M.H.A., Kooijman, P.P.: Squeal noise of rail-bound vehicles influenced by lateral contact position. J. Sound Vib. 267(3), 497–507 (2003)Thompson, D.J., Hemsworth, B., Vincent, N.: Experimental validation of the TWINS prediction program for rolling noise, part 1: description of the model and method. J. Sound Vib. 193(1), 123–135 (1996)Monk-Steel, A., Thompson, D.J.: Models for railway curve squeal noise. In: VIII International Conference on Recent Advances in Structural Dynamics, Southampton, UK (2003)Barman, J.F., Katzenelson, J.: A generalized Nyquist-type stability criterion for multivariable feedback systems. Int. J. Control 20(4), 593–622 (1974)Huang, Z.Y., Thompson, D.J., Jones, C.J.C.: Squeal prediction for a bogied vehicle in a curve. In Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM vol. 99, pp. 313–319. Springer, Heidelberg (2008)Hsu, S.S., Huang, Z., Iwnicki, S.D., Thompson, D.J., Jones, C.J., Xie, G., Allen, P.D.: Experimental and theoretical investigation of railway wheel squeal. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 221(1), 59–73 (2007)Squicciarini, G., Usberti, S., Thompson, D.J., Corradi, R., Barbera, A.: Curve squeal in the presence of two wheel/rail contact points. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 603–610. Springer, Heidelberg (2015)Xie, G., Allen, P.D., Iwnicki, S.D., Alonso, A., Thompson, D.J., Jones, C.J., Huang, Z.Y.: Introduction of falling friction coefficients into curving calculations for studying curve squeal noise. Veh. Syst. Dyn. 44(sup1), 261–271 (2006)Giménez, J.G., Alonso, A., Gómez, E.: Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Veh. Syst. Dyn. 43(4), 233–244 (2005)Chiello, O., Ayasse, J.B., Vincent, N., Koch, J.R.: Curve squeal of urban rolling stock—part 3: theoretical model. J. Sound Vib. 293(3), 710–727 (2006)Collette, C.: Importance of the wheel vertical dynamics in the squeal noise mechanism on a scaled test bench. Shock Vibr. 19(2), 145–153 (2012)Brunel, J.F., Dufrénoy, P., Naït, M., Muñoz, J.L., Demilly, F.: Transient models for curve squeal noise. J. Sound Vib. 293(3), 758–765 (2006)Glocker, C., Cataldi-Spinola, E., Leine, R.I.: Curve squealing of trains: measurement, modelling and simulation. J. Sound Vib. 324(1), 365–386 (2009)Pieringer, A.: A numerical investigation of curve squeal in the case of constant wheel/rail friction. J. Sound Vib. 333(18), 4295–4313 (2014)Pieringer, A., Kropp, W.: A time-domain model for coupled vertical and tangential wheel/rail interaction—a contribution to the modelling of curve squeal. In: Maeda, T., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 221–229. Springer, Heidelberg (2012)Pieringer, A., Baeza, L., Kropp. W.: Modelling of railway curve squeal including effects of wheel rotation. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 417–424. Springer, Heidelberg (2015)Zenzerovic, I., Pieringer, A., Kropp. W.: Towards an engineering model for curve squeal. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 433–440. Springer, Heidelberg (2015)Zenzerovic, I., Kropp, W., Pieringer, A.: An engineering time-domain model for curve squeal: tangential point-contact model and Green’s functions approach. J. Sound Vib. 376, 149–165 (2016)Pieringer, A., Torstensson, P.T., Giner, J., Baeza, L.: Investigation of railway curve squeal using a combination of frequency- and time-domain models. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 81–93. Springer, Heidelberg (2018)Chen, G.X., Xiao, J.B., Liu, Q.Y., Zhou. Z.R.: Complex eigenvalue analysis of railway curve squeal. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 433–439. Springer, Heidelberg (2008)Fourie, D.J., Gräbe, P.J., Heyns, P.S., Fröhling, R.D.: Analysis of wheel squeal due to unsteady longitudinal creepage using the complex eigenvalue method. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 55–67. Springer, Heidelberg (2018)Wang, C., Dwight, R., Li, W., Jiang, J.: Prediction on curve squeal in the case of constant wheel rail friction coefficient. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp XXX–XXX. Springer, Heidelberg (2018)Ding, B., Squicciarini, G., Thompson, D.J.: Effects of rail dynamics and friction characteristics on curve squeal. In: XIII International Conference on Motion and Vibration Control and XII International Conference on Recent Advances in Structural Dynamics (MoViC/RASD), Southampton (2016)Bleedorn, T.G., Johnstone. B.: Steerable steel wheel systems and wheel noise suppression. In: Conference Rec IAS 12th Annual Meeting, Los Angeles, California (1977)Koch, J.R., Vincent, N., Chollet, H., Chiello, O.: Curve squeal of urban rolling stock—part 2: parametric study on a 1/4 scale test rig. J. Sound Vib. 293(3), 701–709 (2006)Logston, C.F., Itami, G.S.: Locomotive friction-creep studies. ASME J. Eng. Ind. 102(3), 275–281 (1980)Ertz, M.: Creep force laws for wheel/rail contact with temperature-dependent coefficient of friction. In: 8th Mini Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest (2002)Lang, W., Roth, R.: Optimale Kraftschlussausnutzung bei Hochleistungs-Schienenfahrzeugen. Eisenbahntechnische Rundsch. 42, 61–66 (1993)Polach, O.: Creep forces in simulations of traction vehicles running on adhesion limit. Wear 258(7), 992–1000 (2005)Zhang, W., Chen, J., Wu, X., Jin, X.: Wheel/rail adhesion and analysis by using full scale roller rig. Wear 253(1), 82–88 (2002)Harrison, H., McCanney, T., Cotter, J.: Recent developments in coefficient of friction measurements at the rail/wheel interface. Wear 253(1), 114–123 (2002)Gallardo-Hernandez, E.A., Lewis, R.: Twin disc assessment of wheel/rail adhesion. Wear 265(9), 1309–1316 (2008)Fletcher, D.I., Lewis, S.: Creep curve measurement to support wear and adhesion modelling, using a continuously variable creep twin disc machine. Wear 298–299, 57–65 (2013)Fletcher, D.I.: A new two-dimensional model of rolling–sliding contact creep curves for a range of lubrication types. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 227(6), 529–537 (2013)Matsumoto, A., Sato, Y., Ono, H., Wang, Y., Yamamoto, M., Tanimoto, M., Oka, Y.: Creep force characteristics between rail and wheel on scaled model. Wear 253(1), 199–203 (2002)Janssens, M.H.A., van Vliet, W.J., Kooijman, P.P., De Beer, F.G.: Curve squeal of railbound vehicles (part 3): measurement method and results. In: Proceedings of Internoise, vol. 3, pp. 1568–1571, Nice, France (2000)Monk-Steel, A.D., Thompson, D.J., De Beer, F.G., Janssens, M.H.A.: An investigation into the influence of longitudinal creepage on railway squeal noise due to lateral creepage. J. Sound Vib. 293(3), 766–776 (2006)Liu, X., Meehan, P.A.: Investigation of the effect of lateral adhesion and rolling speed on wheel squeal noise. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 227(5), 469–480 (2013)Liu, X., Meehan, P.A.: Investigation of the effect of relative humidity on lateral force in rolling contact and curve squeal. Wear 310(1), 12–19 (2014)Liu, X., Meehan, P.A.: Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers. J. Sound Vib. 371, 393–405 (2016)Jie, E., Kim, J.Y., Hwang, D.H., Lee, J.H., Kim, K.J., Kim, J.C.: An experimental study of squeal noise characteristics for railways using a scale model test rig. In: J. Pombo (ed.) Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, Cagliari, Sardinia, Italy (2016)Eadie, D.T., Santoro, M., Kalousek, J.: Railway noise and the effect of top of rail liquid friction modifiers: changes in sound and vibration spectral distributions in curves. Wear 258(7), 1148–1155 (2005)Bullen, R., Jiang, J.: Algorithms for detection of rail wheel squeal. In: 20th International Congress on Acoustics 2010, ICA 2010—Incorporating Proceedings of the 2010 Annual Conference of the Australian Acoustical Society. pp. 2212–2216 (2010)Stefanelli, R., Dual, J., Cataldi-Spinola, E.: Acoustic modelling of railway wheels and acoustic measurements to determine involved eigenmodes in the curve squealing phenomenon. Veh. Syst. Dyn. 44(sup1), 286–295 (2006)Vincent, N., Koch, J.R., Chollet, H., Guerder, J.Y.: Curve squeal of urban rolling stock—part 1: state of the art and field measurements. J. Sound Vib. 293(3), 691–700 (2006)Anderson, D., Wheatley, N.: Mitigation of wheel squeal and flanging noise on the Australian network. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 399–405. Springer, Heidelberg (2008)Curley, D., Anderson, D.C., Jiang, J., Hanson, D.: Field trials of gauge face lubrication and top-of-rail friction modification for curve noise mitigation. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 449–456. Springer, Heidelberg (2015)Jiang, J., Hanson, D., Dowdell, B.: Wheel squeal—insights from wayside condition monitoring measurements and field trials. In: Anderson, D., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 139, pp 41–53. Springer, Heidelberg (2018)Jiang, J., Dwight, R., Anderson, D.: Field verification of curving noise mechanisms. In: Maeda, T., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 349–356. Springer, Heidelberg (2012)Jiang, J., Anderson, D.C., Dwight, R.: The mechanisms of curve squeal. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 587–594. Springer, Heidelberg (2015)Fourie, D.J., Gräbe, P.J., Heyns, P.S., Fröhling, R.D.: Experimental characterisation of railway wheel squeal occurring in large-radius curves. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 230(6), 1561–1574 (2016)Corradi, R., Crosio, P., Manzoni, S., Squicciarini, G.: Experimental investigation on squeal noise in tramway sharp curves. In: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven (2011)Merideno, I., Nieto, J., Gil-Negrete, N., Landaberea, A., Iartza, J.: Constrained layer damper modelling and performance evaluation for eliminating squeal noise in trams. Shock and Vibration (2014)Nelson J.T.: Wheel/rail noise control manual, TCRP Report 23 (1997)Krüger, F.: Schall- und Erschütterungsschutz im Schienenverkehr. Expert Verlag, Renningen (2001)Elbers, F., Verheijen, E.: Railway noise technical measures catalogue, UIC report UIC003-01-04fe (2013)Oertli, J.: Combatting curve squeal, phase II, final report, UIC (2005)Eadie, D.T., Santoro, M., Powell, W.: Local control of noise and vibration with KELTRACK™ friction modifier and protector® trackside application: an integrated solution. J. Sound Vib. 267(3), 761–772 (2003)Eadie, D.T., Santoro, M.: Top-of-rail friction control for curve noise mitigation and corrugation rate reduction. J. Sound Vib. 293(3), 747–757 (2006)Suda, Y., Iwasa, T., Komine, H., Tomeoka, M., Nakazawa, H., Matsumoto, K., Nakai, T., Tanimoto, M., Kishimoto, Y.: Development of onboard friction control. Wear 258(7), 1109–1114 (2005)Bühler, S., Thallemer, B.: How to avoid squeal noise on railways: state of the art and practical experience. In: Schulte-Werning, B., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 406–411. Springer, Heidelberg (2008)Jones, C.J.C., Thompson, D.J.: Rolling noise generated by railway wheels with visco-elastic layers. J. Sound Vib. 231(3), 779–790 (2000)Wetta, P., Demilly, F.: Reduction of wheel squeal noise generated on curves or during braking. In 11th International of Wheelset Congress, Paris (1995)Brunel, J.F., Dufrénoy, P., Demilly, F.: Modelling of squeal noise attenuation of ring damped wheels. Appl. Acoust. 65(5), 457–471 (2004)Marjani, S.R., Younesian, D.: Suppression of train wheel squeal noise by shunted piezoelectric elements. Int. J. Struct. Stab. Dyn. (2016)Heckl, M.A., Huang, X.Y.: Curve squeal of train wheels, part 3: active control. J. Sound Vib. 229(3), 709–735 (2000)Thompson, D.J., Jones, C.J.C., Waters, T.P., Farrington, D.: A tuned damping device for reducing noise from railway track. Appl. Acoust. 68(1), 43–57 (2007)Jiang, J., Ying, I., Hanson, D., Anderson, D.C.: An investigation of the influence of track dynamics on curve noise. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 441–448. Springer, Heidelberg (2015)Toward, M., Squicciarini, G., Thompson, D.J.: Reducing freight wagon noise at source. Int. Railway J. March, 47–49 (2015)Illingworth, R., Pollard, M.G.: The use of steering axle suspensions to reduce wheel and rail wear in curves. Proc. Inst. Mech. Eng. 196(1), 379–385 (1982)Garcia, J.F., Olaizola, X., Martin, L.M., Gimenez, J.G.: Theoretical comparison between different configurations of radial and conventional bogies. Veh. Syst. Dyn. 33(4), 233–259 (2000)Bruni, S., Goodall, R., Mei, T.X., Tsunashima, H.: Control and monitoring for railway vehicle dynamics. Veh. Syst. Dyn. 45(7–8), 743–779 (2007)Hiensch, M., Larsson, P.O., Nilsson, O., Levy, D., Kapoor, A., Franklin, F., Nielsen, J., Ringsberg, J., Josefson, L.: Two-material rail development: field test results regarding rolling contact fatigue and squeal noise behaviour. Wear 258(7), 964–972 (2005)Kopp, E.: Fünf Jahre Erfahrungen mit asymmetrisch geschliffenen Schienenprofilen. Eisenbahn Techn. Rundsch. 40, 665 (1991

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    MicroRNA Expression and Clinical Outcome of Small Cell Lung Cancer

    Get PDF
    The role of microRNAs in small-cell lung carcinoma (SCLC) is largely unknown. miR-34a is known as a p53 regulated tumor suppressor microRNA in many cancer types. However, its therapeutic implication has never been studied in SCLC, a cancer type with frequent dysfunction of p53. We investigated the expression of a panel of 7 microRNAs (miR-21, miR-29b, miR-34a/b/c, miR-155, and let-7a) in 31 SCLC tumors, 14 SCLC cell lines, and 26 NSCLC cell lines. We observed significantly lower miR-21, miR-29b, and miR-34a expression in SCLC cell lines than in NSCLC cell lines. The expression of the 7 microRNAs was unrelated to SCLC patients' clinical characteristics and was neither prognostic in term of overall survival or progression-free survival nor predictive of treatment response. Overexpression or downregulation of miR-34a did not influence SCLC cell viability. The expression of these 7 microRNAs also did not predict in vitro sensitivity to cisplatin or etoposide in SCLC cell lines. Overexpression or downregulation of miR-34a did not influence sensitivity to cisplatin or etoposide in SCLC cell lines. In contrast to downregulation of the miR-34a target genes cMET and Axl by overexpression of miR-34a in NSCLC cell lines, the intrinsic expression of cMET and Axl was low in SCLC cell lines and was not influenced by overexpression of miR-34a. Our results suggest that the expression of the 7 selected microRNAs are not prognostic in SCLC patients, and miR-34a is unrelated to the malignant behavior of SCLC cells and is unlikely to be a therapeutic target

    Dicer1 Depletion in Male Germ Cells Leads to Infertility Due to Cumulative Meiotic and Spermiogenic Defects

    Get PDF
    Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes

    Classification and nomenclature of all human homeobox genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.</p> <p>Results</p> <p>We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive <it>DUX1 </it>to <it>DUX5 </it>homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.</p> <p>Conclusion</p> <p>We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.</p
    corecore